Evaluation of Harmonic Contributions for Multi Harmonic Sources System Based on Mixed Entropy Screening and an Improved Independent Component Analysis Method

Evaluating the harmonic contributions of each nonlinear customer is important for harmonic mitigation in a power system with diverse and complex harmonic sources. The existing evaluation methods have two shortcomings: (1) the calculation accuracy is easily affected by background harmonics fluctuatio...

Full description

Bibliographic Details
Main Authors: Jinshuai Zhao, Honggeng Yang, Xiaoyang Ma, Fangwei Xu
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/22/3/323
Description
Summary:Evaluating the harmonic contributions of each nonlinear customer is important for harmonic mitigation in a power system with diverse and complex harmonic sources. The existing evaluation methods have two shortcomings: (1) the calculation accuracy is easily affected by background harmonics fluctuation; and (2) they rely on Global Positioning System (GPS) measurements, which is not economic when widely applied. In this paper, based on the properties of asynchronous measurements, we propose a model for evaluating harmonic contributions without GPS technology. In addition, based on the Gaussianity of the measured harmonic data, a mixed entropy screening mechanism is proposed to assess the fluctuation degree of the background harmonics for each data segment. Only the segments with relatively stable background harmonics are chosen for calculation, which reduces the impacts of the background harmonics in a certain degree. Additionally, complex independent component analysis, as a potential method to this field, is improved in this paper. During the calculation process, the sparseness of the mixed matrix in this method is used to reduce the optimization dimension and enhance the evaluation accuracy. The validity and the effectiveness of the proposed methods are verified through simulations and field case studies.
ISSN:1099-4300