Whey-Derived Porous Carbon Scaffolds for Bone Tissue Engineering

Porous carbon structures derived from whey powders are described and evaluated as potential scaffolds in bone tissue engineering. These materials have a porosity between 48% and 58%, with a hierarchical pore size distribution ranging from 1 to 400 micrometres. Compressive strength and elastic modulu...

Full description

Bibliographic Details
Main Authors: Raúl Llamas-Unzueta, Marta Suárez, Adolfo Fernández, Raquel Díaz, Miguel A. Montes-Morán, J. Angel Menéndez
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Biomedicines
Subjects:
Online Access:https://www.mdpi.com/2227-9059/9/9/1091
Description
Summary:Porous carbon structures derived from whey powders are described and evaluated as potential scaffolds in bone tissue engineering. These materials have a porosity between 48% and 58%, with a hierarchical pore size distribution ranging from 1 to 400 micrometres. Compressive strength and elastic modulus are outstanding for such a porous material, being up to three times better than those of traditional HA or TCP scaffolds with similar porosities. They also present non-cytotoxic and bioactive behavior, due to their carbon-based composition that also includes some residual mineral salts content.
ISSN:2227-9059