Summary: | In the minimal scenario of quantum correlations, two parties can choose from two observables with two possible outcomes each. Probabilities are specified by four marginals and four correlations. The resulting four-dimensional convex body of correlations, denoted $\mathcal{Q}$, is fundamental for quantum information theory. We review and systematize what is known about $\mathcal{Q}$, and add many details, visualizations, and complete proofs. In particular, we provide a detailed description of the boundary, which consists of three-dimensional faces isomorphic to elliptopes and sextic algebraic manifolds of exposed extreme points. These patches are separated by cubic surfaces of non-exposed extreme points. We provide a trigonometric parametrization of all extreme points, along with their exposing Tsirelson inequalities and quantum models. All non-classical extreme points (exposed or not) are self-testing, i.e., realized by an essentially unique quantum model.
Two principles, which are specific to the minimal scenario, allow a quick and complete overview: The first is the pushout transformation, i.e., the application of the sine function to each coordinate. This transforms the classical correlation polytope exactly into the correlation body $\mathcal{Q}$, also identifying the boundary structures. The second principle, self-duality, is an isomorphism between $\mathcal{Q}$ and its polar dual, i.e., the set of affine inequalities satisfied by all quantum correlations (“Tsirelson inequalities''). The same isomorphism links the polytope of classical correlations contained in $\mathcal{Q}$ to the polytope of no-signalling correlations, which contains $\mathcal{Q}$.
We also discuss the sets of correlations achieved with fixed Hilbert space dimension, fixed state or fixed observables, and establish a new non-linear inequality for $\mathcal{Q}$ involving the determinant of the correlation matrix.
|