Summary: | Abstract Management of chemotherapy-induced peripheral neuropathy (CIPN) remains a significant challenge in the treatment of cancer. Risk mitigation for CIPN involves preemptive reduction of cumulative dose or reduction of dose intensity upon emergence of symptoms, despite the risk of reduced tumor efficacy. A predictive biomarker for dose-limiting CIPN could improve treatment outcomes by allowing providers to make informed decisions that balance both safety and efficacy. To identify a predictive biomarker of CIPN, markers of neurodegeneration neurofilament-light (NfL), glial fibrillary acidic protein (GFAP), tau and ubiquitin c-terminal hydrolase L1 (UCHL1) were assessed in serum of up to 88 subjects drawn 21 days following the first of 6 treatments with chemotherapeutics paclitaxel and carboplatin. Serum NfL and GFAP were increased with chemotherapy. Further, NfL change predicted subsequent onset of grade 2–3 CIPN during the remainder of the trial (mean treatment duration = 200 days) and trended toward stronger prediction of CIPN that remained unresolved at the end of the study. These results confirm previous reports that serum NfL is increased in CIPN and provide the first evidence that NfL can be used to identify subjects susceptible to dose-limiting paclitaxel and carboplatin induced CIPN prior to onset of symptoms.
|