Investigation of Energy Losses Induced by Non-Uniform Inflow in a Coastal Axial-Flow Pump
A non-uniform velocity profile occurs at the inlet of a coastal axial-flow pump which is placed downstream of the forebay with side-intake. As a result, the actual efficiency and head of the pump is dissimilar to the design parameters, and the lack of the theoretical investigation on the relationshi...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-09-01
|
Series: | Journal of Marine Science and Engineering |
Subjects: | |
Online Access: | https://www.mdpi.com/2077-1312/10/9/1283 |
_version_ | 1827660014556282880 |
---|---|
author | Fan Meng Yanjun Li Jia Chen |
author_facet | Fan Meng Yanjun Li Jia Chen |
author_sort | Fan Meng |
collection | DOAJ |
description | A non-uniform velocity profile occurs at the inlet of a coastal axial-flow pump which is placed downstream of the forebay with side-intake. As a result, the actual efficiency and head of the pump is dissimilar to the design parameters, and the lack of the theoretical investigation on the relationship between inflow distortion and energy losses restricts the application of the coastal axial-flow pump in the drainage project. In this paper, the unsteady numerical simulation and entropy production theory are employed to obtain the internal flow structure and quantify energy losses, respectively, with three inflow deflection angles (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>θ</mi></semantics></math></inline-formula> = 0°, 15°, or 30°). It is reported that the best efficiency point (BEP) shifts to large flow rate with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>θ</mi></semantics></math></inline-formula> increasing, due to the decline of the velocity component in axial direction at the impeller inlet. Therefore, the total entropy production (TEP) of the coastal axial-flow pump rises with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>θ</mi></semantics></math></inline-formula> increasing under small flow rates, but it decreases with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>θ</mi></semantics></math></inline-formula> increasing under large flow rates. The high total entropy production rate (TEPR) in the vicinity of the tailing edge of the impeller and guide vanes rises with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>θ</mi></semantics></math></inline-formula> increasing, caused by the enhanced wake vortex strength. In addition, the high TEPR area near the inlet of outflow conduit rises with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>θ</mi></semantics></math></inline-formula> increasing, originated from the improvement of secondary vortices intensity. |
first_indexed | 2024-03-09T23:32:16Z |
format | Article |
id | doaj.art-8d7dba0eecfe4f79b1dbc053d4d26f41 |
institution | Directory Open Access Journal |
issn | 2077-1312 |
language | English |
last_indexed | 2024-03-09T23:32:16Z |
publishDate | 2022-09-01 |
publisher | MDPI AG |
record_format | Article |
series | Journal of Marine Science and Engineering |
spelling | doaj.art-8d7dba0eecfe4f79b1dbc053d4d26f412023-11-23T17:07:46ZengMDPI AGJournal of Marine Science and Engineering2077-13122022-09-01109128310.3390/jmse10091283Investigation of Energy Losses Induced by Non-Uniform Inflow in a Coastal Axial-Flow PumpFan Meng0Yanjun Li1Jia Chen2Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, ChinaResearch Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, ChinaResearch Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, ChinaA non-uniform velocity profile occurs at the inlet of a coastal axial-flow pump which is placed downstream of the forebay with side-intake. As a result, the actual efficiency and head of the pump is dissimilar to the design parameters, and the lack of the theoretical investigation on the relationship between inflow distortion and energy losses restricts the application of the coastal axial-flow pump in the drainage project. In this paper, the unsteady numerical simulation and entropy production theory are employed to obtain the internal flow structure and quantify energy losses, respectively, with three inflow deflection angles (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>θ</mi></semantics></math></inline-formula> = 0°, 15°, or 30°). It is reported that the best efficiency point (BEP) shifts to large flow rate with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>θ</mi></semantics></math></inline-formula> increasing, due to the decline of the velocity component in axial direction at the impeller inlet. Therefore, the total entropy production (TEP) of the coastal axial-flow pump rises with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>θ</mi></semantics></math></inline-formula> increasing under small flow rates, but it decreases with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>θ</mi></semantics></math></inline-formula> increasing under large flow rates. The high total entropy production rate (TEPR) in the vicinity of the tailing edge of the impeller and guide vanes rises with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>θ</mi></semantics></math></inline-formula> increasing, caused by the enhanced wake vortex strength. In addition, the high TEPR area near the inlet of outflow conduit rises with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>θ</mi></semantics></math></inline-formula> increasing, originated from the improvement of secondary vortices intensity.https://www.mdpi.com/2077-1312/10/9/1283coastal axial-flow pumpinflow deflection angletotal entropy productionenergy losses |
spellingShingle | Fan Meng Yanjun Li Jia Chen Investigation of Energy Losses Induced by Non-Uniform Inflow in a Coastal Axial-Flow Pump Journal of Marine Science and Engineering coastal axial-flow pump inflow deflection angle total entropy production energy losses |
title | Investigation of Energy Losses Induced by Non-Uniform Inflow in a Coastal Axial-Flow Pump |
title_full | Investigation of Energy Losses Induced by Non-Uniform Inflow in a Coastal Axial-Flow Pump |
title_fullStr | Investigation of Energy Losses Induced by Non-Uniform Inflow in a Coastal Axial-Flow Pump |
title_full_unstemmed | Investigation of Energy Losses Induced by Non-Uniform Inflow in a Coastal Axial-Flow Pump |
title_short | Investigation of Energy Losses Induced by Non-Uniform Inflow in a Coastal Axial-Flow Pump |
title_sort | investigation of energy losses induced by non uniform inflow in a coastal axial flow pump |
topic | coastal axial-flow pump inflow deflection angle total entropy production energy losses |
url | https://www.mdpi.com/2077-1312/10/9/1283 |
work_keys_str_mv | AT fanmeng investigationofenergylossesinducedbynonuniforminflowinacoastalaxialflowpump AT yanjunli investigationofenergylossesinducedbynonuniforminflowinacoastalaxialflowpump AT jiachen investigationofenergylossesinducedbynonuniforminflowinacoastalaxialflowpump |