Arctic marine secondary organic aerosol contributes significantly to summertime particle size distributions in the Canadian Arctic Archipelago

<p>Summertime Arctic aerosol size distributions are strongly controlled by natural regional emissions. Within this context, we use a chemical transport model with size-resolved aerosol microphysics (GEOS-Chem-TOMAS) to interpret measurements of aerosol size distributions from the Canadian Arct...

Full description

Bibliographic Details
Main Authors: B. Croft, R. V. Martin, W. R. Leaitch, J. Burkart, R. Y.-W. Chang, D. B. Collins, P. L. Hayes, A. L. Hodshire, L. Huang, J. K. Kodros, A. Moravek, E. L. Mungall, J. G. Murphy, S. Sharma, S. Tremblay, G. R. Wentworth, M. D. Willis, J. P. D. Abbatt, J. R. Pierce
Format: Article
Language:English
Published: Copernicus Publications 2019-03-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/19/2787/2019/acp-19-2787-2019.pdf
_version_ 1818151294751211520
author B. Croft
R. V. Martin
R. V. Martin
W. R. Leaitch
J. Burkart
J. Burkart
R. Y.-W. Chang
D. B. Collins
D. B. Collins
P. L. Hayes
A. L. Hodshire
L. Huang
J. K. Kodros
J. K. Kodros
A. Moravek
E. L. Mungall
J. G. Murphy
S. Sharma
S. Tremblay
G. R. Wentworth
G. R. Wentworth
M. D. Willis
M. D. Willis
J. P. D. Abbatt
J. R. Pierce
author_facet B. Croft
R. V. Martin
R. V. Martin
W. R. Leaitch
J. Burkart
J. Burkart
R. Y.-W. Chang
D. B. Collins
D. B. Collins
P. L. Hayes
A. L. Hodshire
L. Huang
J. K. Kodros
J. K. Kodros
A. Moravek
E. L. Mungall
J. G. Murphy
S. Sharma
S. Tremblay
G. R. Wentworth
G. R. Wentworth
M. D. Willis
M. D. Willis
J. P. D. Abbatt
J. R. Pierce
author_sort B. Croft
collection DOAJ
description <p>Summertime Arctic aerosol size distributions are strongly controlled by natural regional emissions. Within this context, we use a chemical transport model with size-resolved aerosol microphysics (GEOS-Chem-TOMAS) to interpret measurements of aerosol size distributions from the Canadian Arctic Archipelago during the summer of 2016, as part of the “NETwork on Climate and Aerosols: Addressing key uncertainties in Remote Canadian Environments” (NETCARE) project. Our simulations suggest that condensation of secondary organic aerosol (SOA) from precursor vapors emitted in the Arctic and near Arctic marine (ice-free seawater) regions plays a key role in particle growth events that shape the aerosol size distributions observed at Alert (82.5<span class="inline-formula"><sup>∘</sup></span>&thinsp;N, 62.3<span class="inline-formula"><sup>∘</sup></span>&thinsp;W), Eureka (80.1<span class="inline-formula"><sup>∘</sup></span>&thinsp;N, 86.4<span class="inline-formula"><sup>∘</sup></span>&thinsp;W), and along a NETCARE ship track within the Archipelago. We refer to this SOA as Arctic marine SOA (AMSOA) to reflect the Arctic marine-based and likely biogenic sources for the precursors of the condensing organic vapors.</p> <p><span id="page2788"/>AMSOA from a simulated flux (500&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">µ</mi><mi mathvariant="normal">g</mi><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">day</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="8f93b7fde00f18c6b1eb9f6df658301c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-2787-2019-ie00001.svg" width="64pt" height="15pt" src="acp-19-2787-2019-ie00001.png"/></svg:svg></span></span>, north of 50<span class="inline-formula"><sup>∘</sup></span>&thinsp;N) of precursor vapors (with an assumed yield of unity) reduces the summertime particle size distribution model–observation mean fractional error 2- to 4-fold, relative to a simulation without this AMSOA. Particle growth due to the condensable organic vapor flux contributes strongly (30&thinsp;%–50&thinsp;%) to the simulated summertime-mean number of particles with diameters larger than 20&thinsp;<span class="inline-formula">nm</span> in the study region. This growth couples with ternary particle nucleation (sulfuric acid, ammonia, and water vapor) and biogenic sulfate condensation to account for more than 90&thinsp;% of this simulated particle number, which represents a strong biogenic influence. The simulated fit to summertime size-distribution observations is further improved at Eureka and for the ship track by scaling up the nucleation rate by a factor of 100 to account for other particle precursors such as gas-phase iodine and/or amines and/or fragmenting primary particles that could be missing from our simulations. Additionally, the fits to the observed size distributions and total aerosol number concentrations for particles larger than 4&thinsp;<span class="inline-formula">nm</span> improve with the assumption that the AMSOA contains semi-volatile species: the model–observation mean fractional error is reduced 2- to 3-fold for the Alert and ship track size distributions. AMSOA accounts for about half of the simulated particle surface area and volume distributions in the summertime Canadian Arctic Archipelago, with climate-relevant simulated summertime pan-Arctic-mean top-of-the-atmosphere aerosol direct (<span class="inline-formula">−0.04</span>&thinsp;<span class="inline-formula">W m<sup>−2</sup></span>) and cloud-albedo indirect (<span class="inline-formula">−0.4</span>&thinsp;<span class="inline-formula">W m<sup>−2</sup></span>) radiative effects, which due to uncertainties are viewed as an order of magnitude estimate. Future work should focus on further understanding summertime Arctic sources of AMSOA.</p>
first_indexed 2024-12-11T13:36:33Z
format Article
id doaj.art-8d805a5f46e8493eb75da09e1bdabf10
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-11T13:36:33Z
publishDate 2019-03-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-8d805a5f46e8493eb75da09e1bdabf102022-12-22T01:05:00ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242019-03-01192787281210.5194/acp-19-2787-2019Arctic marine secondary organic aerosol contributes significantly to summertime particle size distributions in the Canadian Arctic ArchipelagoB. Croft0R. V. Martin1R. V. Martin2W. R. Leaitch3J. Burkart4J. Burkart5R. Y.-W. Chang6D. B. Collins7D. B. Collins8P. L. Hayes9A. L. Hodshire10L. Huang11J. K. Kodros12J. K. Kodros13A. Moravek14E. L. Mungall15J. G. Murphy16S. Sharma17S. Tremblay18G. R. Wentworth19G. R. Wentworth20M. D. Willis21M. D. Willis22J. P. D. Abbatt23J. R. Pierce24Dalhousie University, Department of Physics and Atmospheric Science, Halifax, NS, B3H 4R2, CanadaDalhousie University, Department of Physics and Atmospheric Science, Halifax, NS, B3H 4R2, CanadaHarvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USAEnvironment and Climate Change Canada, Climate Research Division, Toronto, ON, M3H 5T4, CanadaUniversity of Toronto, Department of Chemistry, Toronto, ON, M5S 3H6, Canadanow at: University of Vienna, Faculty of Physics, Aerosol Physics and Environmental Physics, Vienna, 1090, AustriaDalhousie University, Department of Physics and Atmospheric Science, Halifax, NS, B3H 4R2, CanadaUniversity of Toronto, Department of Chemistry, Toronto, ON, M5S 3H6, Canadanow at: Bucknell University, Department of Chemistry, Lewisburg, PA 17837, USAUniversité de Montréal, Department of Chemistry, Montréal, QC, H3C 3J7, CanadaColorado State University, Department of Atmospheric Science, Fort Collins, CO 80423, USAEnvironment and Climate Change Canada, Climate Research Division, Toronto, ON, M3H 5T4, CanadaColorado State University, Department of Atmospheric Science, Fort Collins, CO 80423, USAnow at: Institute of Chemical Engineering Sciences, ICE/FORTH, Patras, 26500, GreeceUniversity of Toronto, Department of Chemistry, Toronto, ON, M5S 3H6, CanadaUniversity of Toronto, Department of Chemistry, Toronto, ON, M5S 3H6, CanadaUniversity of Toronto, Department of Chemistry, Toronto, ON, M5S 3H6, CanadaEnvironment and Climate Change Canada, Climate Research Division, Toronto, ON, M3H 5T4, CanadaUniversité de Montréal, Department of Chemistry, Montréal, QC, H3C 3J7, CanadaUniversity of Toronto, Department of Chemistry, Toronto, ON, M5S 3H6, Canadanow at: Alberta Environment and Parks, Environmental Monitoring and Science Division, Edmonton, AB, T5J 5C6, CanadaUniversity of Toronto, Department of Chemistry, Toronto, ON, M5S 3H6, Canadanow at: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USAUniversity of Toronto, Department of Chemistry, Toronto, ON, M5S 3H6, CanadaColorado State University, Department of Atmospheric Science, Fort Collins, CO 80423, USA<p>Summertime Arctic aerosol size distributions are strongly controlled by natural regional emissions. Within this context, we use a chemical transport model with size-resolved aerosol microphysics (GEOS-Chem-TOMAS) to interpret measurements of aerosol size distributions from the Canadian Arctic Archipelago during the summer of 2016, as part of the “NETwork on Climate and Aerosols: Addressing key uncertainties in Remote Canadian Environments” (NETCARE) project. Our simulations suggest that condensation of secondary organic aerosol (SOA) from precursor vapors emitted in the Arctic and near Arctic marine (ice-free seawater) regions plays a key role in particle growth events that shape the aerosol size distributions observed at Alert (82.5<span class="inline-formula"><sup>∘</sup></span>&thinsp;N, 62.3<span class="inline-formula"><sup>∘</sup></span>&thinsp;W), Eureka (80.1<span class="inline-formula"><sup>∘</sup></span>&thinsp;N, 86.4<span class="inline-formula"><sup>∘</sup></span>&thinsp;W), and along a NETCARE ship track within the Archipelago. We refer to this SOA as Arctic marine SOA (AMSOA) to reflect the Arctic marine-based and likely biogenic sources for the precursors of the condensing organic vapors.</p> <p><span id="page2788"/>AMSOA from a simulated flux (500&thinsp;<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">µ</mi><mi mathvariant="normal">g</mi><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">day</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="8f93b7fde00f18c6b1eb9f6df658301c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-2787-2019-ie00001.svg" width="64pt" height="15pt" src="acp-19-2787-2019-ie00001.png"/></svg:svg></span></span>, north of 50<span class="inline-formula"><sup>∘</sup></span>&thinsp;N) of precursor vapors (with an assumed yield of unity) reduces the summertime particle size distribution model–observation mean fractional error 2- to 4-fold, relative to a simulation without this AMSOA. Particle growth due to the condensable organic vapor flux contributes strongly (30&thinsp;%–50&thinsp;%) to the simulated summertime-mean number of particles with diameters larger than 20&thinsp;<span class="inline-formula">nm</span> in the study region. This growth couples with ternary particle nucleation (sulfuric acid, ammonia, and water vapor) and biogenic sulfate condensation to account for more than 90&thinsp;% of this simulated particle number, which represents a strong biogenic influence. The simulated fit to summertime size-distribution observations is further improved at Eureka and for the ship track by scaling up the nucleation rate by a factor of 100 to account for other particle precursors such as gas-phase iodine and/or amines and/or fragmenting primary particles that could be missing from our simulations. Additionally, the fits to the observed size distributions and total aerosol number concentrations for particles larger than 4&thinsp;<span class="inline-formula">nm</span> improve with the assumption that the AMSOA contains semi-volatile species: the model–observation mean fractional error is reduced 2- to 3-fold for the Alert and ship track size distributions. AMSOA accounts for about half of the simulated particle surface area and volume distributions in the summertime Canadian Arctic Archipelago, with climate-relevant simulated summertime pan-Arctic-mean top-of-the-atmosphere aerosol direct (<span class="inline-formula">−0.04</span>&thinsp;<span class="inline-formula">W m<sup>−2</sup></span>) and cloud-albedo indirect (<span class="inline-formula">−0.4</span>&thinsp;<span class="inline-formula">W m<sup>−2</sup></span>) radiative effects, which due to uncertainties are viewed as an order of magnitude estimate. Future work should focus on further understanding summertime Arctic sources of AMSOA.</p>https://www.atmos-chem-phys.net/19/2787/2019/acp-19-2787-2019.pdf
spellingShingle B. Croft
R. V. Martin
R. V. Martin
W. R. Leaitch
J. Burkart
J. Burkart
R. Y.-W. Chang
D. B. Collins
D. B. Collins
P. L. Hayes
A. L. Hodshire
L. Huang
J. K. Kodros
J. K. Kodros
A. Moravek
E. L. Mungall
J. G. Murphy
S. Sharma
S. Tremblay
G. R. Wentworth
G. R. Wentworth
M. D. Willis
M. D. Willis
J. P. D. Abbatt
J. R. Pierce
Arctic marine secondary organic aerosol contributes significantly to summertime particle size distributions in the Canadian Arctic Archipelago
Atmospheric Chemistry and Physics
title Arctic marine secondary organic aerosol contributes significantly to summertime particle size distributions in the Canadian Arctic Archipelago
title_full Arctic marine secondary organic aerosol contributes significantly to summertime particle size distributions in the Canadian Arctic Archipelago
title_fullStr Arctic marine secondary organic aerosol contributes significantly to summertime particle size distributions in the Canadian Arctic Archipelago
title_full_unstemmed Arctic marine secondary organic aerosol contributes significantly to summertime particle size distributions in the Canadian Arctic Archipelago
title_short Arctic marine secondary organic aerosol contributes significantly to summertime particle size distributions in the Canadian Arctic Archipelago
title_sort arctic marine secondary organic aerosol contributes significantly to summertime particle size distributions in the canadian arctic archipelago
url https://www.atmos-chem-phys.net/19/2787/2019/acp-19-2787-2019.pdf
work_keys_str_mv AT bcroft arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago
AT rvmartin arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago
AT rvmartin arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago
AT wrleaitch arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago
AT jburkart arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago
AT jburkart arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago
AT rywchang arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago
AT dbcollins arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago
AT dbcollins arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago
AT plhayes arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago
AT alhodshire arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago
AT lhuang arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago
AT jkkodros arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago
AT jkkodros arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago
AT amoravek arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago
AT elmungall arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago
AT jgmurphy arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago
AT ssharma arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago
AT stremblay arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago
AT grwentworth arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago
AT grwentworth arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago
AT mdwillis arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago
AT mdwillis arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago
AT jpdabbatt arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago
AT jrpierce arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago