Arctic marine secondary organic aerosol contributes significantly to summertime particle size distributions in the Canadian Arctic Archipelago
<p>Summertime Arctic aerosol size distributions are strongly controlled by natural regional emissions. Within this context, we use a chemical transport model with size-resolved aerosol microphysics (GEOS-Chem-TOMAS) to interpret measurements of aerosol size distributions from the Canadian Arct...
Main Authors: | , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2019-03-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | https://www.atmos-chem-phys.net/19/2787/2019/acp-19-2787-2019.pdf |
_version_ | 1818151294751211520 |
---|---|
author | B. Croft R. V. Martin R. V. Martin W. R. Leaitch J. Burkart J. Burkart R. Y.-W. Chang D. B. Collins D. B. Collins P. L. Hayes A. L. Hodshire L. Huang J. K. Kodros J. K. Kodros A. Moravek E. L. Mungall J. G. Murphy S. Sharma S. Tremblay G. R. Wentworth G. R. Wentworth M. D. Willis M. D. Willis J. P. D. Abbatt J. R. Pierce |
author_facet | B. Croft R. V. Martin R. V. Martin W. R. Leaitch J. Burkart J. Burkart R. Y.-W. Chang D. B. Collins D. B. Collins P. L. Hayes A. L. Hodshire L. Huang J. K. Kodros J. K. Kodros A. Moravek E. L. Mungall J. G. Murphy S. Sharma S. Tremblay G. R. Wentworth G. R. Wentworth M. D. Willis M. D. Willis J. P. D. Abbatt J. R. Pierce |
author_sort | B. Croft |
collection | DOAJ |
description | <p>Summertime Arctic aerosol size distributions are strongly controlled by
natural regional emissions. Within this context, we use a chemical transport
model with size-resolved aerosol microphysics (GEOS-Chem-TOMAS) to interpret
measurements of aerosol size distributions from the Canadian Arctic
Archipelago during the summer of 2016, as part of the “NETwork on Climate
and Aerosols: Addressing key uncertainties in Remote Canadian Environments”
(NETCARE) project. Our simulations suggest that condensation of secondary organic
aerosol (SOA) from precursor vapors emitted in the Arctic and near Arctic
marine (ice-free seawater) regions plays a key role in particle growth events
that shape the aerosol size distributions observed at Alert (82.5<span class="inline-formula"><sup>∘</sup></span> N,
62.3<span class="inline-formula"><sup>∘</sup></span> W), Eureka (80.1<span class="inline-formula"><sup>∘</sup></span> N, 86.4<span class="inline-formula"><sup>∘</sup></span> W), and
along a NETCARE ship track within the Archipelago. We refer to this SOA as
Arctic marine SOA (AMSOA) to reflect the Arctic marine-based and likely
biogenic sources for the precursors of the condensing organic vapors.</p>
<p><span id="page2788"/>AMSOA from a simulated flux (500 <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">µ</mi><mi mathvariant="normal">g</mi><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">day</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="8f93b7fde00f18c6b1eb9f6df658301c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-2787-2019-ie00001.svg" width="64pt" height="15pt" src="acp-19-2787-2019-ie00001.png"/></svg:svg></span></span>, north of
50<span class="inline-formula"><sup>∘</sup></span> N) of precursor vapors (with an assumed yield of unity) reduces the
summertime particle size distribution model–observation mean fractional
error 2- to 4-fold, relative to a simulation without this AMSOA. Particle
growth due to the condensable organic vapor flux contributes strongly
(30 %–50 %) to the simulated summertime-mean number of particles with
diameters larger than 20 <span class="inline-formula">nm</span> in the study region. This growth couples with
ternary particle nucleation (sulfuric acid, ammonia, and water vapor) and
biogenic sulfate condensation to account for more than 90 % of this
simulated particle number, which represents a strong biogenic influence. The simulated fit to
summertime size-distribution observations is further improved at Eureka and
for the ship track by scaling up the nucleation rate by a factor of 100 to
account for other particle precursors such as gas-phase iodine and/or amines
and/or fragmenting primary particles that could be missing from our
simulations. Additionally, the fits to the observed size distributions and total
aerosol number concentrations for particles larger than 4 <span class="inline-formula">nm</span> improve with
the assumption that the AMSOA contains semi-volatile species: the
model–observation mean fractional error is reduced 2- to 3-fold for the Alert and
ship track size distributions. AMSOA accounts for about half of the
simulated particle surface area and volume distributions in the summertime
Canadian Arctic Archipelago, with climate-relevant simulated summertime
pan-Arctic-mean top-of-the-atmosphere aerosol direct (<span class="inline-formula">−0.04</span> <span class="inline-formula">W m<sup>−2</sup></span>) and
cloud-albedo indirect (<span class="inline-formula">−0.4</span> <span class="inline-formula">W m<sup>−2</sup></span>) radiative effects, which due
to uncertainties are viewed as an order of magnitude estimate. Future work
should focus on further understanding summertime Arctic sources of AMSOA.</p> |
first_indexed | 2024-12-11T13:36:33Z |
format | Article |
id | doaj.art-8d805a5f46e8493eb75da09e1bdabf10 |
institution | Directory Open Access Journal |
issn | 1680-7316 1680-7324 |
language | English |
last_indexed | 2024-12-11T13:36:33Z |
publishDate | 2019-03-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Atmospheric Chemistry and Physics |
spelling | doaj.art-8d805a5f46e8493eb75da09e1bdabf102022-12-22T01:05:00ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242019-03-01192787281210.5194/acp-19-2787-2019Arctic marine secondary organic aerosol contributes significantly to summertime particle size distributions in the Canadian Arctic ArchipelagoB. Croft0R. V. Martin1R. V. Martin2W. R. Leaitch3J. Burkart4J. Burkart5R. Y.-W. Chang6D. B. Collins7D. B. Collins8P. L. Hayes9A. L. Hodshire10L. Huang11J. K. Kodros12J. K. Kodros13A. Moravek14E. L. Mungall15J. G. Murphy16S. Sharma17S. Tremblay18G. R. Wentworth19G. R. Wentworth20M. D. Willis21M. D. Willis22J. P. D. Abbatt23J. R. Pierce24Dalhousie University, Department of Physics and Atmospheric Science, Halifax, NS, B3H 4R2, CanadaDalhousie University, Department of Physics and Atmospheric Science, Halifax, NS, B3H 4R2, CanadaHarvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USAEnvironment and Climate Change Canada, Climate Research Division, Toronto, ON, M3H 5T4, CanadaUniversity of Toronto, Department of Chemistry, Toronto, ON, M5S 3H6, Canadanow at: University of Vienna, Faculty of Physics, Aerosol Physics and Environmental Physics, Vienna, 1090, AustriaDalhousie University, Department of Physics and Atmospheric Science, Halifax, NS, B3H 4R2, CanadaUniversity of Toronto, Department of Chemistry, Toronto, ON, M5S 3H6, Canadanow at: Bucknell University, Department of Chemistry, Lewisburg, PA 17837, USAUniversité de Montréal, Department of Chemistry, Montréal, QC, H3C 3J7, CanadaColorado State University, Department of Atmospheric Science, Fort Collins, CO 80423, USAEnvironment and Climate Change Canada, Climate Research Division, Toronto, ON, M3H 5T4, CanadaColorado State University, Department of Atmospheric Science, Fort Collins, CO 80423, USAnow at: Institute of Chemical Engineering Sciences, ICE/FORTH, Patras, 26500, GreeceUniversity of Toronto, Department of Chemistry, Toronto, ON, M5S 3H6, CanadaUniversity of Toronto, Department of Chemistry, Toronto, ON, M5S 3H6, CanadaUniversity of Toronto, Department of Chemistry, Toronto, ON, M5S 3H6, CanadaEnvironment and Climate Change Canada, Climate Research Division, Toronto, ON, M3H 5T4, CanadaUniversité de Montréal, Department of Chemistry, Montréal, QC, H3C 3J7, CanadaUniversity of Toronto, Department of Chemistry, Toronto, ON, M5S 3H6, Canadanow at: Alberta Environment and Parks, Environmental Monitoring and Science Division, Edmonton, AB, T5J 5C6, CanadaUniversity of Toronto, Department of Chemistry, Toronto, ON, M5S 3H6, Canadanow at: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USAUniversity of Toronto, Department of Chemistry, Toronto, ON, M5S 3H6, CanadaColorado State University, Department of Atmospheric Science, Fort Collins, CO 80423, USA<p>Summertime Arctic aerosol size distributions are strongly controlled by natural regional emissions. Within this context, we use a chemical transport model with size-resolved aerosol microphysics (GEOS-Chem-TOMAS) to interpret measurements of aerosol size distributions from the Canadian Arctic Archipelago during the summer of 2016, as part of the “NETwork on Climate and Aerosols: Addressing key uncertainties in Remote Canadian Environments” (NETCARE) project. Our simulations suggest that condensation of secondary organic aerosol (SOA) from precursor vapors emitted in the Arctic and near Arctic marine (ice-free seawater) regions plays a key role in particle growth events that shape the aerosol size distributions observed at Alert (82.5<span class="inline-formula"><sup>∘</sup></span> N, 62.3<span class="inline-formula"><sup>∘</sup></span> W), Eureka (80.1<span class="inline-formula"><sup>∘</sup></span> N, 86.4<span class="inline-formula"><sup>∘</sup></span> W), and along a NETCARE ship track within the Archipelago. We refer to this SOA as Arctic marine SOA (AMSOA) to reflect the Arctic marine-based and likely biogenic sources for the precursors of the condensing organic vapors.</p> <p><span id="page2788"/>AMSOA from a simulated flux (500 <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow class="unit"><mi mathvariant="normal">µ</mi><mi mathvariant="normal">g</mi><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">m</mi><mrow><mo>-</mo><mn mathvariant="normal">2</mn></mrow></msup><mspace linebreak="nobreak" width="0.125em"/><msup><mi mathvariant="normal">day</mi><mrow><mo>-</mo><mn mathvariant="normal">1</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="8f93b7fde00f18c6b1eb9f6df658301c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-2787-2019-ie00001.svg" width="64pt" height="15pt" src="acp-19-2787-2019-ie00001.png"/></svg:svg></span></span>, north of 50<span class="inline-formula"><sup>∘</sup></span> N) of precursor vapors (with an assumed yield of unity) reduces the summertime particle size distribution model–observation mean fractional error 2- to 4-fold, relative to a simulation without this AMSOA. Particle growth due to the condensable organic vapor flux contributes strongly (30 %–50 %) to the simulated summertime-mean number of particles with diameters larger than 20 <span class="inline-formula">nm</span> in the study region. This growth couples with ternary particle nucleation (sulfuric acid, ammonia, and water vapor) and biogenic sulfate condensation to account for more than 90 % of this simulated particle number, which represents a strong biogenic influence. The simulated fit to summertime size-distribution observations is further improved at Eureka and for the ship track by scaling up the nucleation rate by a factor of 100 to account for other particle precursors such as gas-phase iodine and/or amines and/or fragmenting primary particles that could be missing from our simulations. Additionally, the fits to the observed size distributions and total aerosol number concentrations for particles larger than 4 <span class="inline-formula">nm</span> improve with the assumption that the AMSOA contains semi-volatile species: the model–observation mean fractional error is reduced 2- to 3-fold for the Alert and ship track size distributions. AMSOA accounts for about half of the simulated particle surface area and volume distributions in the summertime Canadian Arctic Archipelago, with climate-relevant simulated summertime pan-Arctic-mean top-of-the-atmosphere aerosol direct (<span class="inline-formula">−0.04</span> <span class="inline-formula">W m<sup>−2</sup></span>) and cloud-albedo indirect (<span class="inline-formula">−0.4</span> <span class="inline-formula">W m<sup>−2</sup></span>) radiative effects, which due to uncertainties are viewed as an order of magnitude estimate. Future work should focus on further understanding summertime Arctic sources of AMSOA.</p>https://www.atmos-chem-phys.net/19/2787/2019/acp-19-2787-2019.pdf |
spellingShingle | B. Croft R. V. Martin R. V. Martin W. R. Leaitch J. Burkart J. Burkart R. Y.-W. Chang D. B. Collins D. B. Collins P. L. Hayes A. L. Hodshire L. Huang J. K. Kodros J. K. Kodros A. Moravek E. L. Mungall J. G. Murphy S. Sharma S. Tremblay G. R. Wentworth G. R. Wentworth M. D. Willis M. D. Willis J. P. D. Abbatt J. R. Pierce Arctic marine secondary organic aerosol contributes significantly to summertime particle size distributions in the Canadian Arctic Archipelago Atmospheric Chemistry and Physics |
title | Arctic marine secondary organic aerosol contributes significantly to summertime particle size distributions in the Canadian Arctic Archipelago |
title_full | Arctic marine secondary organic aerosol contributes significantly to summertime particle size distributions in the Canadian Arctic Archipelago |
title_fullStr | Arctic marine secondary organic aerosol contributes significantly to summertime particle size distributions in the Canadian Arctic Archipelago |
title_full_unstemmed | Arctic marine secondary organic aerosol contributes significantly to summertime particle size distributions in the Canadian Arctic Archipelago |
title_short | Arctic marine secondary organic aerosol contributes significantly to summertime particle size distributions in the Canadian Arctic Archipelago |
title_sort | arctic marine secondary organic aerosol contributes significantly to summertime particle size distributions in the canadian arctic archipelago |
url | https://www.atmos-chem-phys.net/19/2787/2019/acp-19-2787-2019.pdf |
work_keys_str_mv | AT bcroft arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago AT rvmartin arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago AT rvmartin arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago AT wrleaitch arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago AT jburkart arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago AT jburkart arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago AT rywchang arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago AT dbcollins arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago AT dbcollins arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago AT plhayes arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago AT alhodshire arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago AT lhuang arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago AT jkkodros arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago AT jkkodros arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago AT amoravek arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago AT elmungall arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago AT jgmurphy arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago AT ssharma arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago AT stremblay arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago AT grwentworth arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago AT grwentworth arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago AT mdwillis arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago AT mdwillis arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago AT jpdabbatt arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago AT jrpierce arcticmarinesecondaryorganicaerosolcontributessignificantlytosummertimeparticlesizedistributionsinthecanadianarcticarchipelago |