What constrains food webs? A maximum entropy framework for predicting their structure with minimal biases.

Food webs are complex ecological networks whose structure is both ecologically and statistically constrained, with many network properties being correlated with each other. Despite the recognition of these invariable relationships in food webs, the use of the principle of maximum entropy (MaxEnt) in...

Full description

Bibliographic Details
Main Authors: Francis Banville, Dominique Gravel, Timothée Poisot
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2023-09-01
Series:PLoS Computational Biology
Online Access:https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011458&type=printable
_version_ 1797674074285015040
author Francis Banville
Dominique Gravel
Timothée Poisot
author_facet Francis Banville
Dominique Gravel
Timothée Poisot
author_sort Francis Banville
collection DOAJ
description Food webs are complex ecological networks whose structure is both ecologically and statistically constrained, with many network properties being correlated with each other. Despite the recognition of these invariable relationships in food webs, the use of the principle of maximum entropy (MaxEnt) in network ecology is still rare. This is surprising considering that MaxEnt is a statistical tool precisely designed for understanding and predicting many types of constrained systems. This principle asserts that the least-biased probability distribution of a system's property, constrained by prior knowledge about that system, is the one with maximum information entropy. MaxEnt has been proven useful in many ecological modeling problems, but its application in food webs and other ecological networks is limited. Here we show how MaxEnt can be used to derive many food-web properties both analytically and heuristically. First, we show how the joint degree distribution (the joint probability distribution of the numbers of prey and predators for each species in the network) can be derived analytically using the number of species and the number of interactions in food webs. Second, we present a heuristic and flexible approach of finding a network's adjacency matrix (the network's representation in matrix format) based on simulated annealing and SVD entropy. We built two heuristic models using the connectance and the joint degree sequence as statistical constraints, respectively. We compared both models' predictions against corresponding null and neutral models commonly used in network ecology using open access data of terrestrial and aquatic food webs sampled globally (N = 257). We found that the heuristic model constrained by the joint degree sequence was a good predictor of many measures of food-web structure, especially the nestedness and motifs distribution. Specifically, our results suggest that the structure of terrestrial and aquatic food webs is mainly driven by their joint degree distribution.
first_indexed 2024-03-11T21:54:51Z
format Article
id doaj.art-8d8545db8aaf4898af8f0943ea7cd6eb
institution Directory Open Access Journal
issn 1553-734X
1553-7358
language English
last_indexed 2024-03-11T21:54:51Z
publishDate 2023-09-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS Computational Biology
spelling doaj.art-8d8545db8aaf4898af8f0943ea7cd6eb2023-09-26T05:30:47ZengPublic Library of Science (PLoS)PLoS Computational Biology1553-734X1553-73582023-09-01199e101145810.1371/journal.pcbi.1011458What constrains food webs? A maximum entropy framework for predicting their structure with minimal biases.Francis BanvilleDominique GravelTimothée PoisotFood webs are complex ecological networks whose structure is both ecologically and statistically constrained, with many network properties being correlated with each other. Despite the recognition of these invariable relationships in food webs, the use of the principle of maximum entropy (MaxEnt) in network ecology is still rare. This is surprising considering that MaxEnt is a statistical tool precisely designed for understanding and predicting many types of constrained systems. This principle asserts that the least-biased probability distribution of a system's property, constrained by prior knowledge about that system, is the one with maximum information entropy. MaxEnt has been proven useful in many ecological modeling problems, but its application in food webs and other ecological networks is limited. Here we show how MaxEnt can be used to derive many food-web properties both analytically and heuristically. First, we show how the joint degree distribution (the joint probability distribution of the numbers of prey and predators for each species in the network) can be derived analytically using the number of species and the number of interactions in food webs. Second, we present a heuristic and flexible approach of finding a network's adjacency matrix (the network's representation in matrix format) based on simulated annealing and SVD entropy. We built two heuristic models using the connectance and the joint degree sequence as statistical constraints, respectively. We compared both models' predictions against corresponding null and neutral models commonly used in network ecology using open access data of terrestrial and aquatic food webs sampled globally (N = 257). We found that the heuristic model constrained by the joint degree sequence was a good predictor of many measures of food-web structure, especially the nestedness and motifs distribution. Specifically, our results suggest that the structure of terrestrial and aquatic food webs is mainly driven by their joint degree distribution.https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011458&type=printable
spellingShingle Francis Banville
Dominique Gravel
Timothée Poisot
What constrains food webs? A maximum entropy framework for predicting their structure with minimal biases.
PLoS Computational Biology
title What constrains food webs? A maximum entropy framework for predicting their structure with minimal biases.
title_full What constrains food webs? A maximum entropy framework for predicting their structure with minimal biases.
title_fullStr What constrains food webs? A maximum entropy framework for predicting their structure with minimal biases.
title_full_unstemmed What constrains food webs? A maximum entropy framework for predicting their structure with minimal biases.
title_short What constrains food webs? A maximum entropy framework for predicting their structure with minimal biases.
title_sort what constrains food webs a maximum entropy framework for predicting their structure with minimal biases
url https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011458&type=printable
work_keys_str_mv AT francisbanville whatconstrainsfoodwebsamaximumentropyframeworkforpredictingtheirstructurewithminimalbiases
AT dominiquegravel whatconstrainsfoodwebsamaximumentropyframeworkforpredictingtheirstructurewithminimalbiases
AT timotheepoisot whatconstrainsfoodwebsamaximumentropyframeworkforpredictingtheirstructurewithminimalbiases