Viscoelastic Capillary Flow Cytometry

A compact microfluidic flow cytometer is demonstrated, comprising viscoelastic flow focusing in fused silica capillaries and a fiber optical interface. Viscoelastic flow focusing enables simple device design and operation with a single‐inlet/outlet fluidic configuration. Fused silica capillaries wit...

Full description

Bibliographic Details
Main Authors: Murat Serhatlioglu, Emil Alstrup Jensen, Maria Niora, Anne Todsen Hansen, Christian Friberg Nielsen, Michelle Maria Theresia Jansman, Leticia Hosta-Rigau, Morten Hanefeld Dziegiel, Kirstine Berg-Sørensen, Ian David Hickson, Anders Kristensen
Format: Article
Language:English
Published: Wiley-VCH 2023-02-01
Series:Advanced NanoBiomed Research
Subjects:
Online Access:https://doi.org/10.1002/anbr.202200137
_version_ 1811169434340950016
author Murat Serhatlioglu
Emil Alstrup Jensen
Maria Niora
Anne Todsen Hansen
Christian Friberg Nielsen
Michelle Maria Theresia Jansman
Leticia Hosta-Rigau
Morten Hanefeld Dziegiel
Kirstine Berg-Sørensen
Ian David Hickson
Anders Kristensen
author_facet Murat Serhatlioglu
Emil Alstrup Jensen
Maria Niora
Anne Todsen Hansen
Christian Friberg Nielsen
Michelle Maria Theresia Jansman
Leticia Hosta-Rigau
Morten Hanefeld Dziegiel
Kirstine Berg-Sørensen
Ian David Hickson
Anders Kristensen
author_sort Murat Serhatlioglu
collection DOAJ
description A compact microfluidic flow cytometer is demonstrated, comprising viscoelastic flow focusing in fused silica capillaries and a fiber optical interface. Viscoelastic flow focusing enables simple device design and operation with a single‐inlet/outlet fluidic configuration. Fused silica capillaries with different inner diameters are effortlessly interchanged to eliminate blockage ratio limitations and enable single‐train particle focusing for a wide range of particle sizes and geometries. The compact system is mounted on an inverted microscope for easy integration with optical imaging and other optofluidic modalities, such as optical trapping and particle sorting. A real‐time cytometric analysis of three channels, forward scattering, side scattering, and fluorescence detection, is performed on LABVIEW. A throughput of 3500 events s−1 is performed on particles of sizes ranging from 2 to 20 μm, using capillaries of different inner diameters ranging from 30 to 75 μm. The outer diameter of all capillaries is identical to the cladding diameter of the applied optical fibers. This enables easy exchange and precise optical alignment of fibers and capillaries on a microfabricated jig. The performance of the microfluidic flow cytometer is benchmarked using polystyrene calibration beads, poly(lactic‐co‐glycolic acid) particles, erythrocytes, THP‐1 leukemic monocytes, and human metaphase chromosomes.
first_indexed 2024-04-10T16:43:24Z
format Article
id doaj.art-8d8e42562cce4281b8438a40dd47f490
institution Directory Open Access Journal
issn 2699-9307
language English
last_indexed 2024-04-10T16:43:24Z
publishDate 2023-02-01
publisher Wiley-VCH
record_format Article
series Advanced NanoBiomed Research
spelling doaj.art-8d8e42562cce4281b8438a40dd47f4902023-02-08T05:18:55ZengWiley-VCHAdvanced NanoBiomed Research2699-93072023-02-0132n/an/a10.1002/anbr.202200137Viscoelastic Capillary Flow CytometryMurat Serhatlioglu0Emil Alstrup Jensen1Maria Niora2Anne Todsen Hansen3Christian Friberg Nielsen4Michelle Maria Theresia Jansman5Leticia Hosta-Rigau6Morten Hanefeld Dziegiel7Kirstine Berg-Sørensen8Ian David Hickson9Anders Kristensen10Department of Health Technology Technical University of Denmark Ørsteds Plads Building 345C 2800 Kongens Lyngby DenmarkDepartment of Health Technology Technical University of Denmark Ørsteds Plads Building 345C 2800 Kongens Lyngby DenmarkDepartment of Health Technology Technical University of Denmark Ørsteds Plads Building 345C 2800 Kongens Lyngby DenmarkDepartment of Clinical Immunology University of Copenhagen Blegdamsvej 9 2100 København Ø DenmarkCenter for Chromosome Stability Department of Cellular and Molecular Medicine University of Copenhagen 2200 København N. DenmarkDepartment of Health Technology Technical University of Denmark Ørsteds Plads Building 345C 2800 Kongens Lyngby DenmarkDepartment of Health Technology Technical University of Denmark Ørsteds Plads Building 345C 2800 Kongens Lyngby DenmarkDepartment of Clinical Immunology University of Copenhagen Blegdamsvej 9 2100 København Ø DenmarkDepartment of Health Technology Technical University of Denmark Ørsteds Plads Building 345C 2800 Kongens Lyngby DenmarkCenter for Chromosome Stability Department of Cellular and Molecular Medicine University of Copenhagen 2200 København N. DenmarkDepartment of Health Technology Technical University of Denmark Ørsteds Plads Building 345C 2800 Kongens Lyngby DenmarkA compact microfluidic flow cytometer is demonstrated, comprising viscoelastic flow focusing in fused silica capillaries and a fiber optical interface. Viscoelastic flow focusing enables simple device design and operation with a single‐inlet/outlet fluidic configuration. Fused silica capillaries with different inner diameters are effortlessly interchanged to eliminate blockage ratio limitations and enable single‐train particle focusing for a wide range of particle sizes and geometries. The compact system is mounted on an inverted microscope for easy integration with optical imaging and other optofluidic modalities, such as optical trapping and particle sorting. A real‐time cytometric analysis of three channels, forward scattering, side scattering, and fluorescence detection, is performed on LABVIEW. A throughput of 3500 events s−1 is performed on particles of sizes ranging from 2 to 20 μm, using capillaries of different inner diameters ranging from 30 to 75 μm. The outer diameter of all capillaries is identical to the cladding diameter of the applied optical fibers. This enables easy exchange and precise optical alignment of fibers and capillaries on a microfabricated jig. The performance of the microfluidic flow cytometer is benchmarked using polystyrene calibration beads, poly(lactic‐co‐glycolic acid) particles, erythrocytes, THP‐1 leukemic monocytes, and human metaphase chromosomes.https://doi.org/10.1002/anbr.202200137blood cellscapillarychromosomesflow cytometrymicrofluidicsoptofluidics
spellingShingle Murat Serhatlioglu
Emil Alstrup Jensen
Maria Niora
Anne Todsen Hansen
Christian Friberg Nielsen
Michelle Maria Theresia Jansman
Leticia Hosta-Rigau
Morten Hanefeld Dziegiel
Kirstine Berg-Sørensen
Ian David Hickson
Anders Kristensen
Viscoelastic Capillary Flow Cytometry
Advanced NanoBiomed Research
blood cells
capillary
chromosomes
flow cytometry
microfluidics
optofluidics
title Viscoelastic Capillary Flow Cytometry
title_full Viscoelastic Capillary Flow Cytometry
title_fullStr Viscoelastic Capillary Flow Cytometry
title_full_unstemmed Viscoelastic Capillary Flow Cytometry
title_short Viscoelastic Capillary Flow Cytometry
title_sort viscoelastic capillary flow cytometry
topic blood cells
capillary
chromosomes
flow cytometry
microfluidics
optofluidics
url https://doi.org/10.1002/anbr.202200137
work_keys_str_mv AT muratserhatlioglu viscoelasticcapillaryflowcytometry
AT emilalstrupjensen viscoelasticcapillaryflowcytometry
AT marianiora viscoelasticcapillaryflowcytometry
AT annetodsenhansen viscoelasticcapillaryflowcytometry
AT christianfribergnielsen viscoelasticcapillaryflowcytometry
AT michellemariatheresiajansman viscoelasticcapillaryflowcytometry
AT leticiahostarigau viscoelasticcapillaryflowcytometry
AT mortenhanefelddziegiel viscoelasticcapillaryflowcytometry
AT kirstinebergsørensen viscoelasticcapillaryflowcytometry
AT iandavidhickson viscoelasticcapillaryflowcytometry
AT anderskristensen viscoelasticcapillaryflowcytometry