Estrogen- and Satiety State-Dependent Metabolic Lateralization in the Hypothalamus of Female Rats.
Hypothalamus is the highest center and the main crossroad of numerous homeostatic regulatory pathways including reproduction and energy metabolism. Previous reports indicate that some of these functions may be driven by the synchronized but distinct functioning of the left and right hypothalamic sid...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2015-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC4560379?pdf=render |
_version_ | 1818289817441533952 |
---|---|
author | Istvan Toth David S Kiss Gergely Jocsak Virag Somogyi Eva Toronyi Tibor Bartha Laszlo V Frenyo Tamas L Horvath Attila Zsarnovszky |
author_facet | Istvan Toth David S Kiss Gergely Jocsak Virag Somogyi Eva Toronyi Tibor Bartha Laszlo V Frenyo Tamas L Horvath Attila Zsarnovszky |
author_sort | Istvan Toth |
collection | DOAJ |
description | Hypothalamus is the highest center and the main crossroad of numerous homeostatic regulatory pathways including reproduction and energy metabolism. Previous reports indicate that some of these functions may be driven by the synchronized but distinct functioning of the left and right hypothalamic sides. However, the nature of interplay between the hemispheres with regard to distinct hypothalamic functions is still unclear. Here we investigated the metabolic asymmetry between the left and right hypothalamic sides of ovariectomized female rats by measuring mitochondrial respiration rates, a parameter that reflects the intensity of cell and tissue metabolism. Ovariectomized (saline injected) and ovariectomized+estrogen injected animals were fed ad libitum or fasted to determine 1) the contribution of estrogen to metabolic asymmetry of hypothalamus; and 2) whether the hypothalamic asymmetry is modulated by the satiety state. Results show that estrogen-priming significantly increased both the proportion of animals with detected hypothalamic lateralization and the degree of metabolic difference between the hypothalamic sides causing a right-sided dominance during state 3 mitochondrial respiration (St3) in ad libitum fed animals. After 24 hours of fasting, lateralization in St3 values was clearly maintained; however, instead of the observed right-sided dominance that was detected in ad libitum fed animals here appeared in form of either right- or left-sidedness. In conclusion, our results revealed estrogen- and satiety state-dependent metabolic differences between the two hypothalamic hemispheres in female rats showing that the hypothalamic hemispheres drive the reproductive and satiety state related functions in an asymmetric manner. |
first_indexed | 2024-12-13T02:18:18Z |
format | Article |
id | doaj.art-8d8e70a2acb348d7a85abc2d03249117 |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-12-13T02:18:18Z |
publishDate | 2015-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-8d8e70a2acb348d7a85abc2d032491172022-12-22T00:02:50ZengPublic Library of Science (PLoS)PLoS ONE1932-62032015-01-01109e013746210.1371/journal.pone.0137462Estrogen- and Satiety State-Dependent Metabolic Lateralization in the Hypothalamus of Female Rats.Istvan TothDavid S KissGergely JocsakVirag SomogyiEva ToronyiTibor BarthaLaszlo V FrenyoTamas L HorvathAttila ZsarnovszkyHypothalamus is the highest center and the main crossroad of numerous homeostatic regulatory pathways including reproduction and energy metabolism. Previous reports indicate that some of these functions may be driven by the synchronized but distinct functioning of the left and right hypothalamic sides. However, the nature of interplay between the hemispheres with regard to distinct hypothalamic functions is still unclear. Here we investigated the metabolic asymmetry between the left and right hypothalamic sides of ovariectomized female rats by measuring mitochondrial respiration rates, a parameter that reflects the intensity of cell and tissue metabolism. Ovariectomized (saline injected) and ovariectomized+estrogen injected animals were fed ad libitum or fasted to determine 1) the contribution of estrogen to metabolic asymmetry of hypothalamus; and 2) whether the hypothalamic asymmetry is modulated by the satiety state. Results show that estrogen-priming significantly increased both the proportion of animals with detected hypothalamic lateralization and the degree of metabolic difference between the hypothalamic sides causing a right-sided dominance during state 3 mitochondrial respiration (St3) in ad libitum fed animals. After 24 hours of fasting, lateralization in St3 values was clearly maintained; however, instead of the observed right-sided dominance that was detected in ad libitum fed animals here appeared in form of either right- or left-sidedness. In conclusion, our results revealed estrogen- and satiety state-dependent metabolic differences between the two hypothalamic hemispheres in female rats showing that the hypothalamic hemispheres drive the reproductive and satiety state related functions in an asymmetric manner.http://europepmc.org/articles/PMC4560379?pdf=render |
spellingShingle | Istvan Toth David S Kiss Gergely Jocsak Virag Somogyi Eva Toronyi Tibor Bartha Laszlo V Frenyo Tamas L Horvath Attila Zsarnovszky Estrogen- and Satiety State-Dependent Metabolic Lateralization in the Hypothalamus of Female Rats. PLoS ONE |
title | Estrogen- and Satiety State-Dependent Metabolic Lateralization in the Hypothalamus of Female Rats. |
title_full | Estrogen- and Satiety State-Dependent Metabolic Lateralization in the Hypothalamus of Female Rats. |
title_fullStr | Estrogen- and Satiety State-Dependent Metabolic Lateralization in the Hypothalamus of Female Rats. |
title_full_unstemmed | Estrogen- and Satiety State-Dependent Metabolic Lateralization in the Hypothalamus of Female Rats. |
title_short | Estrogen- and Satiety State-Dependent Metabolic Lateralization in the Hypothalamus of Female Rats. |
title_sort | estrogen and satiety state dependent metabolic lateralization in the hypothalamus of female rats |
url | http://europepmc.org/articles/PMC4560379?pdf=render |
work_keys_str_mv | AT istvantoth estrogenandsatietystatedependentmetaboliclateralizationinthehypothalamusoffemalerats AT davidskiss estrogenandsatietystatedependentmetaboliclateralizationinthehypothalamusoffemalerats AT gergelyjocsak estrogenandsatietystatedependentmetaboliclateralizationinthehypothalamusoffemalerats AT viragsomogyi estrogenandsatietystatedependentmetaboliclateralizationinthehypothalamusoffemalerats AT evatoronyi estrogenandsatietystatedependentmetaboliclateralizationinthehypothalamusoffemalerats AT tiborbartha estrogenandsatietystatedependentmetaboliclateralizationinthehypothalamusoffemalerats AT laszlovfrenyo estrogenandsatietystatedependentmetaboliclateralizationinthehypothalamusoffemalerats AT tamaslhorvath estrogenandsatietystatedependentmetaboliclateralizationinthehypothalamusoffemalerats AT attilazsarnovszky estrogenandsatietystatedependentmetaboliclateralizationinthehypothalamusoffemalerats |