Perfect Prismatoids and the Conjecture Concerning Face Numbers of Centrally Symmetric Polytopes

<p>In this paper we introduce and study a class of centrally symmetric polytopes – perfect prismatoids – and some its properties related to the famous conjecture concerning face numbers of centrally symmetric polytopes are proved. It is proved that any Hanner polytope is a perfect prismatoid a...

Full description

Bibliographic Details
Main Author: M. A. Kozachok
Format: Article
Language:English
Published: Yaroslavl State University 2012-01-01
Series:Моделирование и анализ информационных систем
Subjects:
Online Access:http://mais-journal.ru/jour/article/view/148
_version_ 1797971772213035008
author M. A. Kozachok
author_facet M. A. Kozachok
author_sort M. A. Kozachok
collection DOAJ
description <p>In this paper we introduce and study a class of centrally symmetric polytopes – perfect prismatoids – and some its properties related to the famous conjecture concerning face numbers of centrally symmetric polytopes are proved. It is proved that any Hanner polytope is a perfect prismatoid and any perfect prismatoid is affine equivalent to some 0/1-polytope.</p><p> </p>
first_indexed 2024-04-11T03:37:51Z
format Article
id doaj.art-8d8f1047f5cc4a8fa463a0ad570674c9
institution Directory Open Access Journal
issn 1818-1015
2313-5417
language English
last_indexed 2024-04-11T03:37:51Z
publishDate 2012-01-01
publisher Yaroslavl State University
record_format Article
series Моделирование и анализ информационных систем
spelling doaj.art-8d8f1047f5cc4a8fa463a0ad570674c92023-01-02T04:48:04ZengYaroslavl State UniversityМоделирование и анализ информационных систем1818-10152313-54172012-01-01196137147142Perfect Prismatoids and the Conjecture Concerning Face Numbers of Centrally Symmetric PolytopesM. A. Kozachok0Математический институт им. В.А. Стеклова РАН; Ярославский государственный университет им. П.Г. Демидова, Международная лаборатория "Дискретная и вычислительная геометрия" им. Б.Н. Делоне<p>In this paper we introduce and study a class of centrally symmetric polytopes – perfect prismatoids – and some its properties related to the famous conjecture concerning face numbers of centrally symmetric polytopes are proved. It is proved that any Hanner polytope is a perfect prismatoid and any perfect prismatoid is affine equivalent to some 0/1-polytope.</p><p> </p>http://mais-journal.ru/jour/article/view/148многогранникимногогранники Ханнерагипотеза Калаи
spellingShingle M. A. Kozachok
Perfect Prismatoids and the Conjecture Concerning Face Numbers of Centrally Symmetric Polytopes
Моделирование и анализ информационных систем
многогранники
многогранники Ханнера
гипотеза Калаи
title Perfect Prismatoids and the Conjecture Concerning Face Numbers of Centrally Symmetric Polytopes
title_full Perfect Prismatoids and the Conjecture Concerning Face Numbers of Centrally Symmetric Polytopes
title_fullStr Perfect Prismatoids and the Conjecture Concerning Face Numbers of Centrally Symmetric Polytopes
title_full_unstemmed Perfect Prismatoids and the Conjecture Concerning Face Numbers of Centrally Symmetric Polytopes
title_short Perfect Prismatoids and the Conjecture Concerning Face Numbers of Centrally Symmetric Polytopes
title_sort perfect prismatoids and the conjecture concerning face numbers of centrally symmetric polytopes
topic многогранники
многогранники Ханнера
гипотеза Калаи
url http://mais-journal.ru/jour/article/view/148
work_keys_str_mv AT makozachok perfectprismatoidsandtheconjectureconcerningfacenumbersofcentrallysymmetricpolytopes