Gaussian Pseudorandom Number Generator Using Linear Feedback Shift Registers in Extended Fields

A new proposal to generate pseudorandom numbers with Gaussian distribution is presented. The generator is a generalization to the extended field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G&...

Full description

Bibliographic Details
Main Authors: Guillermo Cotrina, Alberto Peinado, Andrés Ortiz
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/5/556
Description
Summary:A new proposal to generate pseudorandom numbers with Gaussian distribution is presented. The generator is a generalization to the extended field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>F</mi><mo>(</mo><msup><mn>2</mn><mi>n</mi></msup><mo>)</mo></mrow></semantics></math></inline-formula> of the one using cyclic rotations of linear feedback shift registers (LFSRs) originally defined in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>F</mi><mo>(</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>. The rotations applied to LFSRs in the binary case are no longer needed in the extended field due to the implicit rotations found in the binary equivalent model of LFSRs in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>F</mi><mo>(</mo><msup><mn>2</mn><mi>n</mi></msup><mo>)</mo></mrow></semantics></math></inline-formula>. The new proposal is aligned with the current trend in cryptography of using extended fields as a way to speed up the bitrate of the pseudorandom generators. This proposal allows the use of LFSRs in cryptography to be taken further, from the generation of the classical uniformly distributed sequences to other areas, such as quantum key distribution schemes, in which sequences with Gaussian distribution are needed. The paper contains the statistical analysis of the numbers produced and a comparison with other Gaussian generators.
ISSN:2227-7390