Gaussian Pseudorandom Number Generator Using Linear Feedback Shift Registers in Extended Fields

A new proposal to generate pseudorandom numbers with Gaussian distribution is presented. The generator is a generalization to the extended field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G&...

Full description

Bibliographic Details
Main Authors: Guillermo Cotrina, Alberto Peinado, Andrés Ortiz
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/5/556
_version_ 1797413284467441664
author Guillermo Cotrina
Alberto Peinado
Andrés Ortiz
author_facet Guillermo Cotrina
Alberto Peinado
Andrés Ortiz
author_sort Guillermo Cotrina
collection DOAJ
description A new proposal to generate pseudorandom numbers with Gaussian distribution is presented. The generator is a generalization to the extended field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>F</mi><mo>(</mo><msup><mn>2</mn><mi>n</mi></msup><mo>)</mo></mrow></semantics></math></inline-formula> of the one using cyclic rotations of linear feedback shift registers (LFSRs) originally defined in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>F</mi><mo>(</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>. The rotations applied to LFSRs in the binary case are no longer needed in the extended field due to the implicit rotations found in the binary equivalent model of LFSRs in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>F</mi><mo>(</mo><msup><mn>2</mn><mi>n</mi></msup><mo>)</mo></mrow></semantics></math></inline-formula>. The new proposal is aligned with the current trend in cryptography of using extended fields as a way to speed up the bitrate of the pseudorandom generators. This proposal allows the use of LFSRs in cryptography to be taken further, from the generation of the classical uniformly distributed sequences to other areas, such as quantum key distribution schemes, in which sequences with Gaussian distribution are needed. The paper contains the statistical analysis of the numbers produced and a comparison with other Gaussian generators.
first_indexed 2024-03-09T05:16:07Z
format Article
id doaj.art-8d9c828f6a264cf0af2fb3c2427d8131
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T05:16:07Z
publishDate 2021-03-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-8d9c828f6a264cf0af2fb3c2427d81312023-12-03T12:45:49ZengMDPI AGMathematics2227-73902021-03-019555610.3390/math9050556Gaussian Pseudorandom Number Generator Using Linear Feedback Shift Registers in Extended FieldsGuillermo Cotrina0Alberto Peinado1Andrés Ortiz2Department Ingeniería de Comunicaciones, E.T.S. Ingeniería de Telecomunicación, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, SpainDepartment Ingeniería de Comunicaciones, E.T.S. Ingeniería de Telecomunicación, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, SpainDepartment Ingeniería de Comunicaciones, E.T.S. Ingeniería de Telecomunicación, Universidad de Málaga, Campus de Teatinos, 29071 Málaga, SpainA new proposal to generate pseudorandom numbers with Gaussian distribution is presented. The generator is a generalization to the extended field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>F</mi><mo>(</mo><msup><mn>2</mn><mi>n</mi></msup><mo>)</mo></mrow></semantics></math></inline-formula> of the one using cyclic rotations of linear feedback shift registers (LFSRs) originally defined in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>F</mi><mo>(</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>. The rotations applied to LFSRs in the binary case are no longer needed in the extended field due to the implicit rotations found in the binary equivalent model of LFSRs in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mi>F</mi><mo>(</mo><msup><mn>2</mn><mi>n</mi></msup><mo>)</mo></mrow></semantics></math></inline-formula>. The new proposal is aligned with the current trend in cryptography of using extended fields as a way to speed up the bitrate of the pseudorandom generators. This proposal allows the use of LFSRs in cryptography to be taken further, from the generation of the classical uniformly distributed sequences to other areas, such as quantum key distribution schemes, in which sequences with Gaussian distribution are needed. The paper contains the statistical analysis of the numbers produced and a comparison with other Gaussian generators.https://www.mdpi.com/2227-7390/9/5/556LFSRGaussian distributionextended fieldscentral limit theorem
spellingShingle Guillermo Cotrina
Alberto Peinado
Andrés Ortiz
Gaussian Pseudorandom Number Generator Using Linear Feedback Shift Registers in Extended Fields
Mathematics
LFSR
Gaussian distribution
extended fields
central limit theorem
title Gaussian Pseudorandom Number Generator Using Linear Feedback Shift Registers in Extended Fields
title_full Gaussian Pseudorandom Number Generator Using Linear Feedback Shift Registers in Extended Fields
title_fullStr Gaussian Pseudorandom Number Generator Using Linear Feedback Shift Registers in Extended Fields
title_full_unstemmed Gaussian Pseudorandom Number Generator Using Linear Feedback Shift Registers in Extended Fields
title_short Gaussian Pseudorandom Number Generator Using Linear Feedback Shift Registers in Extended Fields
title_sort gaussian pseudorandom number generator using linear feedback shift registers in extended fields
topic LFSR
Gaussian distribution
extended fields
central limit theorem
url https://www.mdpi.com/2227-7390/9/5/556
work_keys_str_mv AT guillermocotrina gaussianpseudorandomnumbergeneratorusinglinearfeedbackshiftregistersinextendedfields
AT albertopeinado gaussianpseudorandomnumbergeneratorusinglinearfeedbackshiftregistersinextendedfields
AT andresortiz gaussianpseudorandomnumbergeneratorusinglinearfeedbackshiftregistersinextendedfields