Construction of Type-II Heterojunctions in Crystalline Carbon Nitride for Efficient Photocatalytic H<sub>2</sub> Evolution

As an encouraging photocatalyst, crystalline carbon nitride (CCN) exhibits unsatisfactory photocatalytic activity and stability due to its rapid recombination of photo-generative carriers. Herein, high-crystalline g-C<sub>3</sub>N<sub>4</sub> was prepared, including CCN obtai...

Full description

Bibliographic Details
Main Authors: Jingyu Zhang, Zhongliang Li, Jialong Li, Yalin He, Haojie Tong, Shuang Li, Zhanli Chai, Kun Lan
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/13/16/2300
Description
Summary:As an encouraging photocatalyst, crystalline carbon nitride (CCN) exhibits unsatisfactory photocatalytic activity and stability due to its rapid recombination of photo-generative carriers. Herein, high-crystalline g-C<sub>3</sub>N<sub>4</sub> was prepared, including CCN obtained in KCl (K-CCN), LiCl-KCl mixture (Li/K-CCN), and LiCl-NaCl-KCl mixture (Li/Na/K-CCN), via the molten salt strategy using pre-prepared bulk carbon nitride (BCN) as a precursor. The obtained BCN sample was formed by heptazine-based units, which convert into triazine-based units for K-CCN. Heptazine and triazine are two isotypes that co-exist in the Li/K-CCN and Li/Na/K-CCN samples. Compared with BCN and other CCN samples, the as-prepared Li/Na/K-CCN sample exhibited the optimal photocatalytic hydrogen evolution rates (3.38 mmol·g<sup>−1</sup>·h<sup>−1</sup> under simulated sunlight and 2.25 mmol·g<sup>−1</sup>·h<sup>−1</sup> under visible light) and the highest apparent quantum yield (10.97%). The improved photocatalytic performance of the Li/Na/K-CCN sample is mainly attributed to the construction of type-II heterojunction and the institution of the built-in electric field between triazine-based CCN and heptazine-based BCN. This work provides a new strategy for the structural optimization and heterostructure construction of crystalline carbon nitride photocatalysts.
ISSN:2079-4991