Summary: | In recent years, HRB400 and HTRB600 steel bars have become the mainstream standard reinforcing steel used in concrete structures in China. However, significant controversy still exists regarding the selection of material constitutive models and the determination of model parameters for buckling, fatigue, hysteresis, and other material characteristics. In this article, an automated process of multi-parameter calculation of the constitutive model for reinforcing steel – simulation accuracy evaluation of the constitutive model – selection of the constitutive model of reinforcing steel is established based on the hybrid programming method using MATLAB and OpenSees software. First, tensile and low-cycle fatigue tests were carried out on HRB400 and HTRB600 steel bars. Second, based on the constitutive model in OpenSees software and the skeleton curve and characteristics such as yielding, fatigue, and hysteresis, the constitutive model parameters of HRB400 and HTRB600 steel bars are determined using indirect and direct fitting methods. Finally, the five similarity parameters of the simulated normalized cumulative hysteretic energy dissipation coefficient are compared with the test results. The results indicate that the simulation accuracy of the Reinforcing Steel model exceeds 72%, which is higher than other four models, making it the best choice for reinforcing steel in numerical simulation.
|