Fabrication and Characterization of Porous Copper with Ultrahigh Porosity
The fabrication of porous copper with ultrahigh porosity by adding 90% spacer content was an unsolved technical problem in the field. In this study, the green compacts placed on a layer wire mesh during the decomposition process of needlelike carbamide as space holder with volume content up to 90% w...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-07-01
|
Series: | Metals |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-4701/12/8/1263 |
Summary: | The fabrication of porous copper with ultrahigh porosity by adding 90% spacer content was an unsolved technical problem in the field. In this study, the green compacts placed on a layer wire mesh during the decomposition process of needlelike carbamide as space holder with volume content up to 90% was successfully conducted to fabricate nondestructive porous copper. Compared with the green compacts directly placed on an alumina plate, the use of this support was crucial for manufacturing highly-porous copper. Characterization of macro- and microscopic morphologies as well as quasi-static compressive test for the obtained porous copper samples was carried out. The results show that the porosity of porous copper samples with 87.3% was slightly smaller than the spacer content. The SEM observation indicates that the internal pores of porous copper formed an open-cell structure and its skeleton was very dense. The compressive tests show that the stress–strain curve of a porous copper sample exhibits the typical characteristics of elastic-plastic metal foam. The energy absorption properties of porous copper samples were also comparable. This study provides a possibility for the preparation of porous copper and other metals with ultrahigh porosity by the well-known space holder method. |
---|---|
ISSN: | 2075-4701 |