Microstructure and mechanical properties of Al-Mg-Mn-Er-Zr alloys fabricated by laser powder bed fusion

This paper centers on high-strength Al-Mg-Mn-Er-Zr alloy, which was developed through the addition of Er, a cheap rare earth element, and suitable for additive manufacturing (3D printing). The microstructure and mechanical properties of Al-Mg-Mn-Er-Zr alloy of as-built and heat treated samples have...

Full description

Bibliographic Details
Main Authors: Yanwu Guo, Wu Wei, Wei Shi, Xiaorong Zhou, Shengping Wen, Xiaolan Wu, Kunyuan Gao, Dongyun Zhang, Peng Qi, Hui Huang, Zuoren Nie
Format: Article
Language:English
Published: Elsevier 2022-10-01
Series:Materials & Design
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0264127522006864
Description
Summary:This paper centers on high-strength Al-Mg-Mn-Er-Zr alloy, which was developed through the addition of Er, a cheap rare earth element, and suitable for additive manufacturing (3D printing). The microstructure and mechanical properties of Al-Mg-Mn-Er-Zr alloy of as-built and heat treated samples have been characterized, which shows: the precipitation of Al3Zr primary phase at the boundary of molten pool promotes heterogeneous nucleation and refines the grains, which suppresses the formation of solidification cracking in Al-Mg alloy. To bring the Er-Zr synergistic effect into play during the aging heat treatment, the nano-scale precipitation phase of Al3Er that diffuses nucleation at an earlier stage promotes the precipitation of Zr, leading to the formation of Al3(Er,Zr) core-shell structure and enhancing precipitation strengthening effect. Under the combined effects of multiple strengthening mechanisms, the yield strength could reach 440 ± 3 MPa; tensile strength, 520 ± 2 MPa and elongation 15.5 ± 1.0 %.
ISSN:0264-1275