Low-energy spin-polarized electrons: their role in surface physics

Low-energy (∼100eV) electrons have been employed for more than half a century to investigate physical, chemical and electronic phenomena in condensed matter and surface physics. A particular role may be attributed to a purely quantum-mechanical property of the electron–its spin or intrinsic angular...

Full description

Bibliographic Details
Main Authors: Christian Tusche, Ying-Jiun Chen, Claus M. Schneider
Format: Article
Language:English
Published: Frontiers Media S.A. 2024-02-01
Series:Frontiers in Physics
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fphy.2024.1349529/full
Description
Summary:Low-energy (∼100eV) electrons have been employed for more than half a century to investigate physical, chemical and electronic phenomena in condensed matter and surface physics. A particular role may be attributed to a purely quantum-mechanical property of the electron–its spin or intrinsic angular momentum. Since the 1970s the electron spin has been indispensable in determining the role of spin-dependent interactions, such as exchange interaction and spin-orbit coupling and their consequences. Most recently, the aspect of topology and its role in condensed matter systems has given a new drive to the investigation of the electron spin and spin textures in such materials. New results on time-dependent ultrafast phenomena may become available by the availability of new intense lasers and laser-driven sources.
ISSN:2296-424X