Quantum Weak Invariants: Dynamical Evolution of Fluctuations and Correlations

Weak invariants are time-dependent observables with conserved expectation values. Their fluctuations, however, do not remain constant in time. On the assumption that time evolution of the state of an open quantum system is given in terms of a completely positive map, the fluctuations monotonically g...

Full description

Bibliographic Details
Main Authors: Zeyi Shi, Sumiyoshi Abe
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/22/11/1219
Description
Summary:Weak invariants are time-dependent observables with conserved expectation values. Their fluctuations, however, do not remain constant in time. On the assumption that time evolution of the state of an open quantum system is given in terms of a completely positive map, the fluctuations monotonically grow even if the map is not unital, in contrast to the fact that monotonic increases of both the von Neumann entropy and Rényi entropy require the map to be unital. In this way, the weak invariants describe temporal asymmetry in a manner different from the entropies. A formula is presented for time evolution of the covariance matrix associated with the weak invariants in cases where the system density matrix obeys the Gorini–Kossakowski–Lindblad–Sudarshan equation.
ISSN:1099-4300