Multiple positive solutions for a singular elliptic equation with Neumann boundary condition in two dimensions

Let $Omegasubset mathbb{R}^2$ be a bounded domain with $C^2$ boundary. In this paper, we are interested in the problem $$displaylines{ -Delta u+u = h(x,u) e^{u^2}/|x|^eta,quad u>0 quad ext{in } Omega, cr frac{partial u}{partial u}= lambda psi u^q quad ext{on }partial Omega, }$$ where $0in...

Full description

Bibliographic Details
Main Authors: Bhatia Sumit Kaur, K. Sreenadh
Format: Article
Language:English
Published: Texas State University 2009-03-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2009/43/abstr.html
_version_ 1818938726529630208
author Bhatia Sumit Kaur
K. Sreenadh
author_facet Bhatia Sumit Kaur
K. Sreenadh
author_sort Bhatia Sumit Kaur
collection DOAJ
description Let $Omegasubset mathbb{R}^2$ be a bounded domain with $C^2$ boundary. In this paper, we are interested in the problem $$displaylines{ -Delta u+u = h(x,u) e^{u^2}/|x|^eta,quad u>0 quad ext{in } Omega, cr frac{partial u}{partial u}= lambda psi u^q quad ext{on }partial Omega, }$$ where $0in partial Omega$, $etain [0,2)$, $lambda>0$, $qin [0,1)$ and $psige 0$ is a H"older continuous function on $overline{Omega}$. Here $h(x,u)$ is a $C^{1}(overline{Omega}imes mathbb{R})$ having superlinear growth at infinity. Using variational methods we show that there exists $0<Lambda <infty$ such that above problem admits at least two solutions in $H^1(Omega)$ if $lambdain (0,Lambda)$, no solution if $lambda>Lambda$ and at least one solution when $lambda = Lambda$.
first_indexed 2024-12-20T06:12:26Z
format Article
id doaj.art-8e1d6bb3b8fc430c8c9e4d3cca622a47
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-20T06:12:26Z
publishDate 2009-03-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-8e1d6bb3b8fc430c8c9e4d3cca622a472022-12-21T19:50:38ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912009-03-01200943,111Multiple positive solutions for a singular elliptic equation with Neumann boundary condition in two dimensionsBhatia Sumit KaurK. SreenadhLet $Omegasubset mathbb{R}^2$ be a bounded domain with $C^2$ boundary. In this paper, we are interested in the problem $$displaylines{ -Delta u+u = h(x,u) e^{u^2}/|x|^eta,quad u>0 quad ext{in } Omega, cr frac{partial u}{partial u}= lambda psi u^q quad ext{on }partial Omega, }$$ where $0in partial Omega$, $etain [0,2)$, $lambda>0$, $qin [0,1)$ and $psige 0$ is a H"older continuous function on $overline{Omega}$. Here $h(x,u)$ is a $C^{1}(overline{Omega}imes mathbb{R})$ having superlinear growth at infinity. Using variational methods we show that there exists $0<Lambda <infty$ such that above problem admits at least two solutions in $H^1(Omega)$ if $lambdain (0,Lambda)$, no solution if $lambda>Lambda$ and at least one solution when $lambda = Lambda$.http://ejde.math.txstate.edu/Volumes/2009/43/abstr.htmlMultiplicitynonlinear Neumann boundary conditionLaplace equation
spellingShingle Bhatia Sumit Kaur
K. Sreenadh
Multiple positive solutions for a singular elliptic equation with Neumann boundary condition in two dimensions
Electronic Journal of Differential Equations
Multiplicity
nonlinear Neumann boundary condition
Laplace equation
title Multiple positive solutions for a singular elliptic equation with Neumann boundary condition in two dimensions
title_full Multiple positive solutions for a singular elliptic equation with Neumann boundary condition in two dimensions
title_fullStr Multiple positive solutions for a singular elliptic equation with Neumann boundary condition in two dimensions
title_full_unstemmed Multiple positive solutions for a singular elliptic equation with Neumann boundary condition in two dimensions
title_short Multiple positive solutions for a singular elliptic equation with Neumann boundary condition in two dimensions
title_sort multiple positive solutions for a singular elliptic equation with neumann boundary condition in two dimensions
topic Multiplicity
nonlinear Neumann boundary condition
Laplace equation
url http://ejde.math.txstate.edu/Volumes/2009/43/abstr.html
work_keys_str_mv AT bhatiasumitkaur multiplepositivesolutionsforasingularellipticequationwithneumannboundaryconditionintwodimensions
AT ksreenadh multiplepositivesolutionsforasingularellipticequationwithneumannboundaryconditionintwodimensions