Preclinical evaluation for engraftment of CD34+ cells gene-edited at the sickle cell disease locus in xenograft mouse and non-human primate models
Summary: Sickle cell disease (SCD) is caused by a 20A > T mutation in the β-globin gene. Genome-editing technologies have the potential to correct the SCD mutation in hematopoietic stem cells (HSCs), producing adult hemoglobin while simultaneously eliminating sickle hemoglobin. Here, we developed...
Main Authors: | , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2021-04-01
|
Series: | Cell Reports Medicine |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S266637912100063X |
_version_ | 1818862408477704192 |
---|---|
author | Naoya Uchida Linhong Li Tina Nassehi Claire M. Drysdale Morgan Yapundich Jackson Gamer Juan J. Haro-Mora Selami Demirci Alexis Leonard Aylin C. Bonifacino Allen E. Krouse N. Seth Linde Cornell Allen Madhusudan V. Peshwa Suk See De Ravin Robert E. Donahue Harry L. Malech John F. Tisdale |
author_facet | Naoya Uchida Linhong Li Tina Nassehi Claire M. Drysdale Morgan Yapundich Jackson Gamer Juan J. Haro-Mora Selami Demirci Alexis Leonard Aylin C. Bonifacino Allen E. Krouse N. Seth Linde Cornell Allen Madhusudan V. Peshwa Suk See De Ravin Robert E. Donahue Harry L. Malech John F. Tisdale |
author_sort | Naoya Uchida |
collection | DOAJ |
description | Summary: Sickle cell disease (SCD) is caused by a 20A > T mutation in the β-globin gene. Genome-editing technologies have the potential to correct the SCD mutation in hematopoietic stem cells (HSCs), producing adult hemoglobin while simultaneously eliminating sickle hemoglobin. Here, we developed high-efficiency viral vector-free non-footprint gene correction in SCD CD34+ cells with electroporation to deliver SCD mutation-targeting guide RNA, Cas9 endonuclease, and 100-mer single-strand donor DNA encoding intact β-globin sequence, achieving therapeutic-level gene correction at DNA (∼30%) and protein (∼80%) levels. Gene-edited SCD CD34+ cells contributed corrected cells 6 months post-xenograft mouse transplant without off-target δ-globin editing. We then developed a rhesus β-to-βs-globin gene conversion strategy to model HSC-targeted genome editing for SCD and demonstrate the engraftment of gene-edited CD34+ cells 10–12 months post-transplant in rhesus macaques. In summary, gene-corrected CD34+ HSCs are engraftable in xenograft mice and non-human primates. These findings are helpful in designing HSC-targeted gene correction trials. |
first_indexed | 2024-12-19T09:59:24Z |
format | Article |
id | doaj.art-8e26d04f631d48acaf229ebbbd2bce17 |
institution | Directory Open Access Journal |
issn | 2666-3791 |
language | English |
last_indexed | 2024-12-19T09:59:24Z |
publishDate | 2021-04-01 |
publisher | Elsevier |
record_format | Article |
series | Cell Reports Medicine |
spelling | doaj.art-8e26d04f631d48acaf229ebbbd2bce172022-12-21T20:26:41ZengElsevierCell Reports Medicine2666-37912021-04-0124100247Preclinical evaluation for engraftment of CD34+ cells gene-edited at the sickle cell disease locus in xenograft mouse and non-human primate modelsNaoya Uchida0Linhong Li1Tina Nassehi2Claire M. Drysdale3Morgan Yapundich4Jackson Gamer5Juan J. Haro-Mora6Selami Demirci7Alexis Leonard8Aylin C. Bonifacino9Allen E. Krouse10N. Seth Linde11Cornell Allen12Madhusudan V. Peshwa13Suk See De Ravin14Robert E. Donahue15Harry L. Malech16John F. Tisdale17Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA; Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan; Corresponding authorMaxCyte, Gaithersburg, MD, USACellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USACellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USACellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USACellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USACellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USACellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USACellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USATranslational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD, USATranslational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD, USATranslational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD, USAMaxCyte, Gaithersburg, MD, USAMaxCyte, Gaithersburg, MD, USALaboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USACellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USALaboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USACellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USASummary: Sickle cell disease (SCD) is caused by a 20A > T mutation in the β-globin gene. Genome-editing technologies have the potential to correct the SCD mutation in hematopoietic stem cells (HSCs), producing adult hemoglobin while simultaneously eliminating sickle hemoglobin. Here, we developed high-efficiency viral vector-free non-footprint gene correction in SCD CD34+ cells with electroporation to deliver SCD mutation-targeting guide RNA, Cas9 endonuclease, and 100-mer single-strand donor DNA encoding intact β-globin sequence, achieving therapeutic-level gene correction at DNA (∼30%) and protein (∼80%) levels. Gene-edited SCD CD34+ cells contributed corrected cells 6 months post-xenograft mouse transplant without off-target δ-globin editing. We then developed a rhesus β-to-βs-globin gene conversion strategy to model HSC-targeted genome editing for SCD and demonstrate the engraftment of gene-edited CD34+ cells 10–12 months post-transplant in rhesus macaques. In summary, gene-corrected CD34+ HSCs are engraftable in xenograft mice and non-human primates. These findings are helpful in designing HSC-targeted gene correction trials.http://www.sciencedirect.com/science/article/pii/S266637912100063Xgenome editingCRISPR/Cas9sickle cell diseasehematopoietic stem celltransplantationelectroporation |
spellingShingle | Naoya Uchida Linhong Li Tina Nassehi Claire M. Drysdale Morgan Yapundich Jackson Gamer Juan J. Haro-Mora Selami Demirci Alexis Leonard Aylin C. Bonifacino Allen E. Krouse N. Seth Linde Cornell Allen Madhusudan V. Peshwa Suk See De Ravin Robert E. Donahue Harry L. Malech John F. Tisdale Preclinical evaluation for engraftment of CD34+ cells gene-edited at the sickle cell disease locus in xenograft mouse and non-human primate models Cell Reports Medicine genome editing CRISPR/Cas9 sickle cell disease hematopoietic stem cell transplantation electroporation |
title | Preclinical evaluation for engraftment of CD34+ cells gene-edited at the sickle cell disease locus in xenograft mouse and non-human primate models |
title_full | Preclinical evaluation for engraftment of CD34+ cells gene-edited at the sickle cell disease locus in xenograft mouse and non-human primate models |
title_fullStr | Preclinical evaluation for engraftment of CD34+ cells gene-edited at the sickle cell disease locus in xenograft mouse and non-human primate models |
title_full_unstemmed | Preclinical evaluation for engraftment of CD34+ cells gene-edited at the sickle cell disease locus in xenograft mouse and non-human primate models |
title_short | Preclinical evaluation for engraftment of CD34+ cells gene-edited at the sickle cell disease locus in xenograft mouse and non-human primate models |
title_sort | preclinical evaluation for engraftment of cd34 cells gene edited at the sickle cell disease locus in xenograft mouse and non human primate models |
topic | genome editing CRISPR/Cas9 sickle cell disease hematopoietic stem cell transplantation electroporation |
url | http://www.sciencedirect.com/science/article/pii/S266637912100063X |
work_keys_str_mv | AT naoyauchida preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels AT linhongli preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels AT tinanassehi preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels AT clairemdrysdale preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels AT morganyapundich preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels AT jacksongamer preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels AT juanjharomora preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels AT selamidemirci preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels AT alexisleonard preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels AT aylincbonifacino preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels AT allenekrouse preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels AT nsethlinde preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels AT cornellallen preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels AT madhusudanvpeshwa preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels AT sukseederavin preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels AT robertedonahue preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels AT harrylmalech preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels AT johnftisdale preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels |