Preclinical evaluation for engraftment of CD34+ cells gene-edited at the sickle cell disease locus in xenograft mouse and non-human primate models

Summary: Sickle cell disease (SCD) is caused by a 20A > T mutation in the β-globin gene. Genome-editing technologies have the potential to correct the SCD mutation in hematopoietic stem cells (HSCs), producing adult hemoglobin while simultaneously eliminating sickle hemoglobin. Here, we developed...

Full description

Bibliographic Details
Main Authors: Naoya Uchida, Linhong Li, Tina Nassehi, Claire M. Drysdale, Morgan Yapundich, Jackson Gamer, Juan J. Haro-Mora, Selami Demirci, Alexis Leonard, Aylin C. Bonifacino, Allen E. Krouse, N. Seth Linde, Cornell Allen, Madhusudan V. Peshwa, Suk See De Ravin, Robert E. Donahue, Harry L. Malech, John F. Tisdale
Format: Article
Language:English
Published: Elsevier 2021-04-01
Series:Cell Reports Medicine
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S266637912100063X
_version_ 1818862408477704192
author Naoya Uchida
Linhong Li
Tina Nassehi
Claire M. Drysdale
Morgan Yapundich
Jackson Gamer
Juan J. Haro-Mora
Selami Demirci
Alexis Leonard
Aylin C. Bonifacino
Allen E. Krouse
N. Seth Linde
Cornell Allen
Madhusudan V. Peshwa
Suk See De Ravin
Robert E. Donahue
Harry L. Malech
John F. Tisdale
author_facet Naoya Uchida
Linhong Li
Tina Nassehi
Claire M. Drysdale
Morgan Yapundich
Jackson Gamer
Juan J. Haro-Mora
Selami Demirci
Alexis Leonard
Aylin C. Bonifacino
Allen E. Krouse
N. Seth Linde
Cornell Allen
Madhusudan V. Peshwa
Suk See De Ravin
Robert E. Donahue
Harry L. Malech
John F. Tisdale
author_sort Naoya Uchida
collection DOAJ
description Summary: Sickle cell disease (SCD) is caused by a 20A > T mutation in the β-globin gene. Genome-editing technologies have the potential to correct the SCD mutation in hematopoietic stem cells (HSCs), producing adult hemoglobin while simultaneously eliminating sickle hemoglobin. Here, we developed high-efficiency viral vector-free non-footprint gene correction in SCD CD34+ cells with electroporation to deliver SCD mutation-targeting guide RNA, Cas9 endonuclease, and 100-mer single-strand donor DNA encoding intact β-globin sequence, achieving therapeutic-level gene correction at DNA (∼30%) and protein (∼80%) levels. Gene-edited SCD CD34+ cells contributed corrected cells 6 months post-xenograft mouse transplant without off-target δ-globin editing. We then developed a rhesus β-to-βs-globin gene conversion strategy to model HSC-targeted genome editing for SCD and demonstrate the engraftment of gene-edited CD34+ cells 10–12 months post-transplant in rhesus macaques. In summary, gene-corrected CD34+ HSCs are engraftable in xenograft mice and non-human primates. These findings are helpful in designing HSC-targeted gene correction trials.
first_indexed 2024-12-19T09:59:24Z
format Article
id doaj.art-8e26d04f631d48acaf229ebbbd2bce17
institution Directory Open Access Journal
issn 2666-3791
language English
last_indexed 2024-12-19T09:59:24Z
publishDate 2021-04-01
publisher Elsevier
record_format Article
series Cell Reports Medicine
spelling doaj.art-8e26d04f631d48acaf229ebbbd2bce172022-12-21T20:26:41ZengElsevierCell Reports Medicine2666-37912021-04-0124100247Preclinical evaluation for engraftment of CD34+ cells gene-edited at the sickle cell disease locus in xenograft mouse and non-human primate modelsNaoya Uchida0Linhong Li1Tina Nassehi2Claire M. Drysdale3Morgan Yapundich4Jackson Gamer5Juan J. Haro-Mora6Selami Demirci7Alexis Leonard8Aylin C. Bonifacino9Allen E. Krouse10N. Seth Linde11Cornell Allen12Madhusudan V. Peshwa13Suk See De Ravin14Robert E. Donahue15Harry L. Malech16John F. Tisdale17Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA; Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan; Corresponding authorMaxCyte, Gaithersburg, MD, USACellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USACellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USACellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USACellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USACellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USACellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USACellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USATranslational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD, USATranslational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD, USATranslational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD, USAMaxCyte, Gaithersburg, MD, USAMaxCyte, Gaithersburg, MD, USALaboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USACellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USALaboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USACellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes (NHLBI)/National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USASummary: Sickle cell disease (SCD) is caused by a 20A > T mutation in the β-globin gene. Genome-editing technologies have the potential to correct the SCD mutation in hematopoietic stem cells (HSCs), producing adult hemoglobin while simultaneously eliminating sickle hemoglobin. Here, we developed high-efficiency viral vector-free non-footprint gene correction in SCD CD34+ cells with electroporation to deliver SCD mutation-targeting guide RNA, Cas9 endonuclease, and 100-mer single-strand donor DNA encoding intact β-globin sequence, achieving therapeutic-level gene correction at DNA (∼30%) and protein (∼80%) levels. Gene-edited SCD CD34+ cells contributed corrected cells 6 months post-xenograft mouse transplant without off-target δ-globin editing. We then developed a rhesus β-to-βs-globin gene conversion strategy to model HSC-targeted genome editing for SCD and demonstrate the engraftment of gene-edited CD34+ cells 10–12 months post-transplant in rhesus macaques. In summary, gene-corrected CD34+ HSCs are engraftable in xenograft mice and non-human primates. These findings are helpful in designing HSC-targeted gene correction trials.http://www.sciencedirect.com/science/article/pii/S266637912100063Xgenome editingCRISPR/Cas9sickle cell diseasehematopoietic stem celltransplantationelectroporation
spellingShingle Naoya Uchida
Linhong Li
Tina Nassehi
Claire M. Drysdale
Morgan Yapundich
Jackson Gamer
Juan J. Haro-Mora
Selami Demirci
Alexis Leonard
Aylin C. Bonifacino
Allen E. Krouse
N. Seth Linde
Cornell Allen
Madhusudan V. Peshwa
Suk See De Ravin
Robert E. Donahue
Harry L. Malech
John F. Tisdale
Preclinical evaluation for engraftment of CD34+ cells gene-edited at the sickle cell disease locus in xenograft mouse and non-human primate models
Cell Reports Medicine
genome editing
CRISPR/Cas9
sickle cell disease
hematopoietic stem cell
transplantation
electroporation
title Preclinical evaluation for engraftment of CD34+ cells gene-edited at the sickle cell disease locus in xenograft mouse and non-human primate models
title_full Preclinical evaluation for engraftment of CD34+ cells gene-edited at the sickle cell disease locus in xenograft mouse and non-human primate models
title_fullStr Preclinical evaluation for engraftment of CD34+ cells gene-edited at the sickle cell disease locus in xenograft mouse and non-human primate models
title_full_unstemmed Preclinical evaluation for engraftment of CD34+ cells gene-edited at the sickle cell disease locus in xenograft mouse and non-human primate models
title_short Preclinical evaluation for engraftment of CD34+ cells gene-edited at the sickle cell disease locus in xenograft mouse and non-human primate models
title_sort preclinical evaluation for engraftment of cd34 cells gene edited at the sickle cell disease locus in xenograft mouse and non human primate models
topic genome editing
CRISPR/Cas9
sickle cell disease
hematopoietic stem cell
transplantation
electroporation
url http://www.sciencedirect.com/science/article/pii/S266637912100063X
work_keys_str_mv AT naoyauchida preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels
AT linhongli preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels
AT tinanassehi preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels
AT clairemdrysdale preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels
AT morganyapundich preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels
AT jacksongamer preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels
AT juanjharomora preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels
AT selamidemirci preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels
AT alexisleonard preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels
AT aylincbonifacino preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels
AT allenekrouse preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels
AT nsethlinde preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels
AT cornellallen preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels
AT madhusudanvpeshwa preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels
AT sukseederavin preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels
AT robertedonahue preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels
AT harrylmalech preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels
AT johnftisdale preclinicalevaluationforengraftmentofcd34cellsgeneeditedatthesicklecelldiseaselocusinxenograftmouseandnonhumanprimatemodels