Fine-tuning the pore environment of ultramicroporous three-dimensional covalent organic frameworks for efficient one-step ethylene purification

Abstract The construction of functional three-dimensional covalent organic frameworks (3D COFs) for gas separation, specifically for the efficient removal of ethane (C2H6) from ethylene (C2H4), is significant but challenging due to their similar physicochemical properties. In this study, we demonstr...

Full description

Bibliographic Details
Main Authors: Yang Xie, Wenjing Wang, Zeyue Zhang, Jian Li, Bo Gui, Junliang Sun, Daqiang Yuan, Cheng Wang
Format: Article
Language:English
Published: Nature Portfolio 2024-04-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-47377-3
Description
Summary:Abstract The construction of functional three-dimensional covalent organic frameworks (3D COFs) for gas separation, specifically for the efficient removal of ethane (C2H6) from ethylene (C2H4), is significant but challenging due to their similar physicochemical properties. In this study, we demonstrate fine-tuning the pore environment of ultramicroporous 3D COFs to achieve efficient one-step C2H4 purification. By choosing our previously reported 3D-TPB-COF-H as a reference material, we rationally design and synthesize an isostructural 3D COF (3D-TPP-COF) containing pyridine units. Impressively, compared with 3D-TPB-COF-H, 3D-TPP-COF exhibits both high C2H6 adsorption capacity (110.4 cm3 g−1 at 293 K and 1 bar) and good C2H6/C2H4 selectivity (1.8), due to the formation of additional C-H···N interactions between pyridine groups and C2H6. To our knowledge, this performance surpasses all other reported COFs and is even comparable to some benchmark porous materials. In addition, dynamic breakthrough experiments reveal that 3D-TPP-COF can be used as a robust absorbent to produce high-purity C2H4 directly from a C2H6/C2H4 mixture. This study provides important guidance for the rational design of 3D COFs for efficient gas separation.
ISSN:2041-1723