Viability of Baryon to Entropy Ratio in Modified Hořava–Lifshitz Gravity

In this paper, we study the matter–antimatter imbalance in the universe through baryogenesis (also known as baryosynthesis), which is a physical process that took off just a little while after the big bang explosion, producing a supremacy of matter over antimatter. In this work, we commit the reprod...

Full description

Bibliographic Details
Main Authors: Abdul Jawad, Abdul Malik Sultan, Shamaila Rani
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/4/824
_version_ 1797603441093115904
author Abdul Jawad
Abdul Malik Sultan
Shamaila Rani
author_facet Abdul Jawad
Abdul Malik Sultan
Shamaila Rani
author_sort Abdul Jawad
collection DOAJ
description In this paper, we study the matter–antimatter imbalance in the universe through baryogenesis (also known as baryosynthesis), which is a physical process that took off just a little while after the big bang explosion, producing a supremacy of matter over antimatter. In this work, we commit the reproduction of the baryon to entropy ratio (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfrac><msub><mi>η</mi><msub><mrow></mrow><mi>B</mi></msub></msub><mi>S</mi></mfrac><mo>=</mo><mfrac><mrow><msub><mi>η</mi><msub><mrow></mrow><mi>β</mi></msub></msub><mo>−</mo><msub><mi>η</mi><mover accent="true"><msub><mrow></mrow><mi>β</mi></msub><mo>¯</mo></mover></msub></mrow><mi>S</mi></mfrac></mrow></semantics></math></inline-formula>), where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>η</mi><msub><mrow></mrow><mi>β</mi></msub></msub><mrow><mo>(</mo><msub><mi>η</mi><mover accent="true"><msub><mrow></mrow><mi>β</mi></msub><mo>¯</mo></mover></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is a baryon(anti-baryon) number and <i>S</i> is the entropy of the universe in the presence of modified Hořava-Lifshitz <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>R</mi><mo>)</mo></mrow></semantics></math></inline-formula> gravity, which is also called <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mover accent="true"><mi>R</mi><mo>˜</mo></mover><mo>)</mo></mrow></semantics></math></inline-formula>-gravity. We inspect different baryogenesis interactions proportional to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>R</mi><mo>˜</mo></mover></semantics></math></inline-formula> (where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>R</mi><mo>˜</mo></mover></semantics></math></inline-formula> is the argument of general function <i>F</i> used for the development of modified Hořava-Lifshitz gravity). For this study, we examine two models by choosing different values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mover accent="true"><mi>R</mi><mo>˜</mo></mover><mo>)</mo></mrow></semantics></math></inline-formula>. In the first model, the functional value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mrow><mo>(</mo><mover accent="true"><mi>R</mi><mo>˜</mo></mover><mo>)</mo></mrow><mo>=</mo><mover accent="true"><mi>R</mi><mo>˜</mo></mover><mo>+</mo><mi>α</mi><msup><mover accent="true"><mi>R</mi><mo>˜</mo></mover><mn>2</mn></msup></mrow></semantics></math></inline-formula> (where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> is a real constant). The second model is more generalized and extended as compare to first one. Mathematically, this model is given by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mrow><mo>(</mo><mover accent="true"><mi>R</mi><mo>˜</mo></mover><mo>)</mo></mrow><mo>=</mo><mover accent="true"><mi>R</mi><mo>˜</mo></mover><mo>+</mo><mi>α</mi><msup><mover accent="true"><mi>R</mi><mo>˜</mo></mover><mn>2</mn></msup><mo>+</mo><mi>β</mi><msup><mover accent="true"><mi>R</mi><mo>˜</mo></mover><mi>m</mi></msup></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> are real constants and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>></mo><mn>2</mn></mrow></semantics></math></inline-formula> is a real model parameter. Our results for both models and different values of <i>m</i> point out that matter-antimatter asymmetry does not vanish under the effect of the modified Hořava-Lifshitz theory of gravity, which shows a consistent and compatible fact of gravitational baryogenesis with recent observational data.
first_indexed 2024-03-11T04:29:13Z
format Article
id doaj.art-8e34900b4d0547db92c4b84d4be0d203
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-11T04:29:13Z
publishDate 2023-03-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-8e34900b4d0547db92c4b84d4be0d2032023-11-17T21:33:15ZengMDPI AGSymmetry2073-89942023-03-0115482410.3390/sym15040824Viability of Baryon to Entropy Ratio in Modified Hořava–Lifshitz GravityAbdul Jawad0Abdul Malik Sultan1Shamaila Rani2Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore 54000, PakistanDepartment of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore 54000, PakistanDepartment of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore 54000, PakistanIn this paper, we study the matter–antimatter imbalance in the universe through baryogenesis (also known as baryosynthesis), which is a physical process that took off just a little while after the big bang explosion, producing a supremacy of matter over antimatter. In this work, we commit the reproduction of the baryon to entropy ratio (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mfrac><msub><mi>η</mi><msub><mrow></mrow><mi>B</mi></msub></msub><mi>S</mi></mfrac><mo>=</mo><mfrac><mrow><msub><mi>η</mi><msub><mrow></mrow><mi>β</mi></msub></msub><mo>−</mo><msub><mi>η</mi><mover accent="true"><msub><mrow></mrow><mi>β</mi></msub><mo>¯</mo></mover></msub></mrow><mi>S</mi></mfrac></mrow></semantics></math></inline-formula>), where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>η</mi><msub><mrow></mrow><mi>β</mi></msub></msub><mrow><mo>(</mo><msub><mi>η</mi><mover accent="true"><msub><mrow></mrow><mi>β</mi></msub><mo>¯</mo></mover></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is a baryon(anti-baryon) number and <i>S</i> is the entropy of the universe in the presence of modified Hořava-Lifshitz <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mi>R</mi><mo>)</mo></mrow></semantics></math></inline-formula> gravity, which is also called <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mover accent="true"><mi>R</mi><mo>˜</mo></mover><mo>)</mo></mrow></semantics></math></inline-formula>-gravity. We inspect different baryogenesis interactions proportional to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>R</mi><mo>˜</mo></mover></semantics></math></inline-formula> (where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mover accent="true"><mi>R</mi><mo>˜</mo></mover></semantics></math></inline-formula> is the argument of general function <i>F</i> used for the development of modified Hořava-Lifshitz gravity). For this study, we examine two models by choosing different values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mo>(</mo><mover accent="true"><mi>R</mi><mo>˜</mo></mover><mo>)</mo></mrow></semantics></math></inline-formula>. In the first model, the functional value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mrow><mo>(</mo><mover accent="true"><mi>R</mi><mo>˜</mo></mover><mo>)</mo></mrow><mo>=</mo><mover accent="true"><mi>R</mi><mo>˜</mo></mover><mo>+</mo><mi>α</mi><msup><mover accent="true"><mi>R</mi><mo>˜</mo></mover><mn>2</mn></msup></mrow></semantics></math></inline-formula> (where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> is a real constant). The second model is more generalized and extended as compare to first one. Mathematically, this model is given by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>F</mi><mrow><mo>(</mo><mover accent="true"><mi>R</mi><mo>˜</mo></mover><mo>)</mo></mrow><mo>=</mo><mover accent="true"><mi>R</mi><mo>˜</mo></mover><mo>+</mo><mi>α</mi><msup><mover accent="true"><mi>R</mi><mo>˜</mo></mover><mn>2</mn></msup><mo>+</mo><mi>β</mi><msup><mover accent="true"><mi>R</mi><mo>˜</mo></mover><mi>m</mi></msup></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> are real constants and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>></mo><mn>2</mn></mrow></semantics></math></inline-formula> is a real model parameter. Our results for both models and different values of <i>m</i> point out that matter-antimatter asymmetry does not vanish under the effect of the modified Hořava-Lifshitz theory of gravity, which shows a consistent and compatible fact of gravitational baryogenesis with recent observational data.https://www.mdpi.com/2073-8994/15/4/824gravitational baryogenesisbaryon to entropy ratiomodified Hořava-Lifshitz gravity
spellingShingle Abdul Jawad
Abdul Malik Sultan
Shamaila Rani
Viability of Baryon to Entropy Ratio in Modified Hořava–Lifshitz Gravity
Symmetry
gravitational baryogenesis
baryon to entropy ratio
modified Hořava-Lifshitz gravity
title Viability of Baryon to Entropy Ratio in Modified Hořava–Lifshitz Gravity
title_full Viability of Baryon to Entropy Ratio in Modified Hořava–Lifshitz Gravity
title_fullStr Viability of Baryon to Entropy Ratio in Modified Hořava–Lifshitz Gravity
title_full_unstemmed Viability of Baryon to Entropy Ratio in Modified Hořava–Lifshitz Gravity
title_short Viability of Baryon to Entropy Ratio in Modified Hořava–Lifshitz Gravity
title_sort viability of baryon to entropy ratio in modified horava lifshitz gravity
topic gravitational baryogenesis
baryon to entropy ratio
modified Hořava-Lifshitz gravity
url https://www.mdpi.com/2073-8994/15/4/824
work_keys_str_mv AT abduljawad viabilityofbaryontoentropyratioinmodifiedhoravalifshitzgravity
AT abdulmaliksultan viabilityofbaryontoentropyratioinmodifiedhoravalifshitzgravity
AT shamailarani viabilityofbaryontoentropyratioinmodifiedhoravalifshitzgravity