Arbuscular mycorrhizal fungi contribute to reactive oxygen species homeostasis of Bombax ceiba L. under drought stress
Drought stress is one of the major abiotic factors limiting plant growth and causing ecological degradation. The regulation of reactive oxygen species (ROS) generation and ROS scavenging is essential to plant growth under drought stress. To investigate the role of arbuscular mycorrhizal fungi (AMF)...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2022-09-01
|
Series: | Frontiers in Microbiology |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fmicb.2022.991781/full |
_version_ | 1798035710972788736 |
---|---|
author | Zhumei Li Yanan Zhang Chao Liu Yong Gao Lihong Han Honglong Chu |
author_facet | Zhumei Li Yanan Zhang Chao Liu Yong Gao Lihong Han Honglong Chu |
author_sort | Zhumei Li |
collection | DOAJ |
description | Drought stress is one of the major abiotic factors limiting plant growth and causing ecological degradation. The regulation of reactive oxygen species (ROS) generation and ROS scavenging is essential to plant growth under drought stress. To investigate the role of arbuscular mycorrhizal fungi (AMF) on ROS generation and ROS scavenging ability under drought stress in Bombax ceiba, the ROS content, the expression levels of respiratory burst oxidase homologue (Rbohs), and the antioxidant response were evaluated in AMF and NMF (non-inoculated AMF) plants under drought stress. 14 BcRboh genes were identified in the B. ceiba genome and divided into five subgroups based on phylogenetic analysis. The effect of AMF on the expression profiles of BcRbohs were different under our conditions. AMF mainly downregulated the expression of Rbohs (BcRbohA, BcRbohD, BcRbohDX2, BcRbohE, BcRbohFX1, and BcRbohI) in drought-stressed seedlings. For well-water (WW) treatment, AMF slightly upregulated Rbohs in seedlings. AMF inoculation decreased the malondialdehyde (MDA) content by 19.11 and 20.85%, decreased the O2⋅– production rate by 39.69 and 65.20% and decreased H2O2 content by 20.06 and 43.21% compared with non-mycorrhizal (NMF) plants under drought stress in root and shoot, respectively. In addition, AMF inoculation increased the non-enzymatic antioxidants glutathione (GSH) and ascorbic acid (AsA) content in roots by 153.52 and 28.18% under drought stress, respectively. The activities of antioxidant enzymes (SOD, PX, CAT, APX, GPX, GR, MDAR, and DHAR) all increased ranging from 19.47 - 131.54% due to AMF inoculation under drought stress. In conclusion, these results reveal that AMF inoculation can maintain ROS homeostasis by mitigating drought-induced ROS burst, via decreasing ROS generation and enhancing ROS scavenging ability of B. ceiba seedlings. |
first_indexed | 2024-04-11T21:02:03Z |
format | Article |
id | doaj.art-8e48792ab3204bf4aa7ba37d0a8296d3 |
institution | Directory Open Access Journal |
issn | 1664-302X |
language | English |
last_indexed | 2024-04-11T21:02:03Z |
publishDate | 2022-09-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Microbiology |
spelling | doaj.art-8e48792ab3204bf4aa7ba37d0a8296d32022-12-22T04:03:28ZengFrontiers Media S.A.Frontiers in Microbiology1664-302X2022-09-011310.3389/fmicb.2022.991781991781Arbuscular mycorrhizal fungi contribute to reactive oxygen species homeostasis of Bombax ceiba L. under drought stressZhumei LiYanan ZhangChao LiuYong GaoLihong HanHonglong ChuDrought stress is one of the major abiotic factors limiting plant growth and causing ecological degradation. The regulation of reactive oxygen species (ROS) generation and ROS scavenging is essential to plant growth under drought stress. To investigate the role of arbuscular mycorrhizal fungi (AMF) on ROS generation and ROS scavenging ability under drought stress in Bombax ceiba, the ROS content, the expression levels of respiratory burst oxidase homologue (Rbohs), and the antioxidant response were evaluated in AMF and NMF (non-inoculated AMF) plants under drought stress. 14 BcRboh genes were identified in the B. ceiba genome and divided into five subgroups based on phylogenetic analysis. The effect of AMF on the expression profiles of BcRbohs were different under our conditions. AMF mainly downregulated the expression of Rbohs (BcRbohA, BcRbohD, BcRbohDX2, BcRbohE, BcRbohFX1, and BcRbohI) in drought-stressed seedlings. For well-water (WW) treatment, AMF slightly upregulated Rbohs in seedlings. AMF inoculation decreased the malondialdehyde (MDA) content by 19.11 and 20.85%, decreased the O2⋅– production rate by 39.69 and 65.20% and decreased H2O2 content by 20.06 and 43.21% compared with non-mycorrhizal (NMF) plants under drought stress in root and shoot, respectively. In addition, AMF inoculation increased the non-enzymatic antioxidants glutathione (GSH) and ascorbic acid (AsA) content in roots by 153.52 and 28.18% under drought stress, respectively. The activities of antioxidant enzymes (SOD, PX, CAT, APX, GPX, GR, MDAR, and DHAR) all increased ranging from 19.47 - 131.54% due to AMF inoculation under drought stress. In conclusion, these results reveal that AMF inoculation can maintain ROS homeostasis by mitigating drought-induced ROS burst, via decreasing ROS generation and enhancing ROS scavenging ability of B. ceiba seedlings.https://www.frontiersin.org/articles/10.3389/fmicb.2022.991781/fulldrought stressAMFreactive oxygen species (ROS)respiratory burst oxidase homologue (Rboh)antioxidant response |
spellingShingle | Zhumei Li Yanan Zhang Chao Liu Yong Gao Lihong Han Honglong Chu Arbuscular mycorrhizal fungi contribute to reactive oxygen species homeostasis of Bombax ceiba L. under drought stress Frontiers in Microbiology drought stress AMF reactive oxygen species (ROS) respiratory burst oxidase homologue (Rboh) antioxidant response |
title | Arbuscular mycorrhizal fungi contribute to reactive oxygen species homeostasis of Bombax ceiba L. under drought stress |
title_full | Arbuscular mycorrhizal fungi contribute to reactive oxygen species homeostasis of Bombax ceiba L. under drought stress |
title_fullStr | Arbuscular mycorrhizal fungi contribute to reactive oxygen species homeostasis of Bombax ceiba L. under drought stress |
title_full_unstemmed | Arbuscular mycorrhizal fungi contribute to reactive oxygen species homeostasis of Bombax ceiba L. under drought stress |
title_short | Arbuscular mycorrhizal fungi contribute to reactive oxygen species homeostasis of Bombax ceiba L. under drought stress |
title_sort | arbuscular mycorrhizal fungi contribute to reactive oxygen species homeostasis of bombax ceiba l under drought stress |
topic | drought stress AMF reactive oxygen species (ROS) respiratory burst oxidase homologue (Rboh) antioxidant response |
url | https://www.frontiersin.org/articles/10.3389/fmicb.2022.991781/full |
work_keys_str_mv | AT zhumeili arbuscularmycorrhizalfungicontributetoreactiveoxygenspecieshomeostasisofbombaxceibalunderdroughtstress AT yananzhang arbuscularmycorrhizalfungicontributetoreactiveoxygenspecieshomeostasisofbombaxceibalunderdroughtstress AT chaoliu arbuscularmycorrhizalfungicontributetoreactiveoxygenspecieshomeostasisofbombaxceibalunderdroughtstress AT yonggao arbuscularmycorrhizalfungicontributetoreactiveoxygenspecieshomeostasisofbombaxceibalunderdroughtstress AT lihonghan arbuscularmycorrhizalfungicontributetoreactiveoxygenspecieshomeostasisofbombaxceibalunderdroughtstress AT honglongchu arbuscularmycorrhizalfungicontributetoreactiveoxygenspecieshomeostasisofbombaxceibalunderdroughtstress |