Categorifying the tensor product of the Kirillov-Reshetikhin crystal B1,1 and a fundamental crystal

We use Khovanov-Lauda-Rouquier (KLR) algebras to categorify a crystal isomorphism between a funda-mental crystal and the tensor product of a Kirillov-Reshetikhin crystal and another fundamental crystal, all in affine type. The nodes of the Kirillov-Reshetikhin crystal correspond to a family of “triv...

Full description

Bibliographic Details
Main Authors: Henry Kvinge, Monica Vazirani
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2020-04-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/6388/pdf
_version_ 1797270216133050368
author Henry Kvinge
Monica Vazirani
author_facet Henry Kvinge
Monica Vazirani
author_sort Henry Kvinge
collection DOAJ
description We use Khovanov-Lauda-Rouquier (KLR) algebras to categorify a crystal isomorphism between a funda-mental crystal and the tensor product of a Kirillov-Reshetikhin crystal and another fundamental crystal, all in affine type. The nodes of the Kirillov-Reshetikhin crystal correspond to a family of “trivial” modules. The nodes of the fun-damental crystal correspond to simple modules of the corresponding cyclotomic KLR algebra. The crystal operators correspond to socle of restriction and behave compatibly with the rule for tensor product of crystal graphs.
first_indexed 2024-04-25T02:00:44Z
format Article
id doaj.art-8e4a69fcb2d444658c8b734433ec681f
institution Directory Open Access Journal
issn 1365-8050
language English
last_indexed 2024-04-25T02:00:44Z
publishDate 2020-04-01
publisher Discrete Mathematics & Theoretical Computer Science
record_format Article
series Discrete Mathematics & Theoretical Computer Science
spelling doaj.art-8e4a69fcb2d444658c8b734433ec681f2024-03-07T14:55:20ZengDiscrete Mathematics & Theoretical Computer ScienceDiscrete Mathematics & Theoretical Computer Science1365-80502020-04-01DMTCS Proceedings, 28th...10.46298/dmtcs.63886388Categorifying the tensor product of the Kirillov-Reshetikhin crystal B1,1 and a fundamental crystalHenry Kvinge0https://orcid.org/0000-0003-4108-1364Monica Vazirani1Department of Mathematics [Univ California Davis]Department of Mathematics [Univ California Davis]We use Khovanov-Lauda-Rouquier (KLR) algebras to categorify a crystal isomorphism between a funda-mental crystal and the tensor product of a Kirillov-Reshetikhin crystal and another fundamental crystal, all in affine type. The nodes of the Kirillov-Reshetikhin crystal correspond to a family of “trivial” modules. The nodes of the fun-damental crystal correspond to simple modules of the corresponding cyclotomic KLR algebra. The crystal operators correspond to socle of restriction and behave compatibly with the rule for tensor product of crystal graphs.https://dmtcs.episciences.org/6388/pdf[math.math-co]mathematics [math]/combinatorics [math.co]
spellingShingle Henry Kvinge
Monica Vazirani
Categorifying the tensor product of the Kirillov-Reshetikhin crystal B1,1 and a fundamental crystal
Discrete Mathematics & Theoretical Computer Science
[math.math-co]mathematics [math]/combinatorics [math.co]
title Categorifying the tensor product of the Kirillov-Reshetikhin crystal B1,1 and a fundamental crystal
title_full Categorifying the tensor product of the Kirillov-Reshetikhin crystal B1,1 and a fundamental crystal
title_fullStr Categorifying the tensor product of the Kirillov-Reshetikhin crystal B1,1 and a fundamental crystal
title_full_unstemmed Categorifying the tensor product of the Kirillov-Reshetikhin crystal B1,1 and a fundamental crystal
title_short Categorifying the tensor product of the Kirillov-Reshetikhin crystal B1,1 and a fundamental crystal
title_sort categorifying the tensor product of the kirillov reshetikhin crystal b1 1 and a fundamental crystal
topic [math.math-co]mathematics [math]/combinatorics [math.co]
url https://dmtcs.episciences.org/6388/pdf
work_keys_str_mv AT henrykvinge categorifyingthetensorproductofthekirillovreshetikhincrystalb11andafundamentalcrystal
AT monicavazirani categorifyingthetensorproductofthekirillovreshetikhincrystalb11andafundamentalcrystal