Assessing the Impact of Soil on Species Diversity Estimation Based on UAV Imaging Spectroscopy in a Natural Alpine Steppe

Grassland species diversity monitoring is essential to grassland resource protection and utilization. “Spectral variation hypothesis” (SVH) provides a remote sensing method for monitoring grassland species diversity at pixel scale by calculating spectral heterogeneity. However, the pixel spectrum is...

Full description

Bibliographic Details
Main Authors: Cong Xu, Yuan Zeng, Zhaoju Zheng, Dan Zhao, Wenjun Liu, Zonghan Ma, Bingfang Wu
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/14/3/671
Description
Summary:Grassland species diversity monitoring is essential to grassland resource protection and utilization. “Spectral variation hypothesis” (SVH) provides a remote sensing method for monitoring grassland species diversity at pixel scale by calculating spectral heterogeneity. However, the pixel spectrum is easily affected by soil and other background factors in natural grassland. Unmanned aerial vehicle (UAV)-based imaging spectroscopy provides the possibility of soil information removal by virtue of its high spatial and spectral resolution. In this study, UAV-imaging spectroscopy data with a spatial resolution of 0.2 m obtained in two sites of typical alpine steppe within the Sanjiangyuan National Nature Reserve were used to analyze the relationships between four spectral diversity metrics (coefficient of variation based on NDVI (CV<sub>NDVI</sub>), coefficient of variation based on multiple bands (CV<sub>Multi</sub>), minimum convex hull volume (CHV) and minimum convex hull area (CHA)) and two species diversity indices (species richness and the Shannon–Wiener index). Meanwhile, two soil removal methods (based on NDVI threshold and the linear spectral unmixing model) were used to investigate the impact of soil on species diversity estimation. The results showed that the Shannon–Wiener index had a better response to spectral diversity than species richness, and CV<sub>Multi</sub> showed the best correlation with the Shannon–Wiener index between the four spectral diversity metrics after removing soil information using the linear spectral unmixing model. It indicated that the estimation ability of spectral diversity to species diversity was significantly improved after removing the soil information. Our findings demonstrated the applicability of the spectral variation hypothesis in natural grassland, and illustrated the impact of soil on species diversity estimation.
ISSN:2072-4292