Design of a Lower Limb Exoskeleton: Robust Control, Simulation and Experimental Results

This paper presents the development of a robust control algorithm to be applied in a knee and ankle joint exoskeleton designed for rehabilitation of flexion/extension movements. The goal of the control law is to follow the trajectory of a straight leg extension routine in a sitting position. This ro...

Full description

Bibliographic Details
Main Authors: E. Anyuli Alvarez Salcido, Daniel Centeno-Barreda, Yukio Rosales, Ricardo Lopéz-Gutiérrez, Sergio Salazar, Rogelio Lozano
Format: Article
Language:English
Published: MDPI AG 2023-09-01
Series:Algorithms
Subjects:
Online Access:https://www.mdpi.com/1999-4893/16/9/449
Description
Summary:This paper presents the development of a robust control algorithm to be applied in a knee and ankle joint exoskeleton designed for rehabilitation of flexion/extension movements. The goal of the control law is to follow the trajectory of a straight leg extension routine in a sitting position. This routine is commonly used to rehabilitate an injury on an Anterior Cruciate Ligament (ACL) and it is applied to the knee and ankle joints. Moreover, the paper presents the development and implementation of the robotic structure of the ankle joint to integrate it into an exoskeleton for gait rehabilitation. The development of the dynamic model and the implementation of the control algorithm in simulation and experimental tests are presented, showing that the proposed control guarantees the convergence of the tracking error.
ISSN:1999-4893