Paleosols can promote root growth of recent vegetation – a case study from the sandy soil–sediment sequence Rakt, the Netherlands
Soil studies commonly comprise the uppermost meter for tracing, e.g., soil development. However, the maximum rooting depth of various plants significantly exceeds this depth. We hypothesized that deeper parts of the soil, soil parent material and especially paleosols provide beneficial conditions in...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2016-10-01
|
Series: | SOIL |
Online Access: | http://www.soil-journal.net/2/537/2016/soil-2-537-2016.pdf |
_version_ | 1831838354389336064 |
---|---|
author | M. I. Gocke F. Kessler J. M. van Mourik B. Jansen G. L. B. Wiesenberg |
author_facet | M. I. Gocke F. Kessler J. M. van Mourik B. Jansen G. L. B. Wiesenberg |
author_sort | M. I. Gocke |
collection | DOAJ |
description | Soil studies commonly comprise the uppermost meter for tracing, e.g., soil development. However, the maximum rooting depth of various plants significantly exceeds this depth. We hypothesized that deeper parts of the soil, soil parent material and especially paleosols provide beneficial conditions in terms of, e.g., nutrient contents, thus supporting their utilization and exploitation by deep roots. We aimed to decipher the different phases of soil formation in Dutch drift sands and cover sands. The study site is located at Bedafse Bergen (southeastern Netherlands) in a 200-year-old oak stand. A recent Podzol developed on drift sand covering a Plaggic Anthrosol that was piled up on a relict Podzol on Late Glacial eolian cover sand. Root-free soil and sediment samples, collected in 10–15 cm depth
increments, were subjected to a multi-proxy physical and geochemical
approach. The Plaggic Anthrosol revealed low bulk density and high
phosphorous and organic carbon contents, whereas the relict Podzol was
characterized by high iron and aluminum contents. Frequencies of fine
(diameter ≤ 2 mm) and medium roots (2–5 mm) were determined on
horizontal levels and the profile wall for a detailed
pseudo-three-dimensional insight. On horizontal levels, living roots were
most abundant in the uppermost part of the relict Podzol with ca. 4450 and
220 m<sup>−2</sup>, significantly exceeding topsoil root abundances. Roots of oak trees thus benefited from the favorable growth conditions in the
nutrient-rich Plaggic Anthrosol, whereas increased compactness and high
aluminum contents of the relict Podzol caused a strong decrease of roots. The
approach demonstrated the benefit of comprehensive root investigation to
support interpretation of soil profiles, as fine roots can be significantly
underestimated when quantified at the profile wall. The possible rooting of
soil parent material and paleosols long after their burial confirmed recent
studies on the potential influence of rooting to overprint sediment–(paleo)soil sequences of various ages, sedimentary and climatic
settings. Potential consequences of deep rooting for terrestrial deep carbon
stocks, located to a relevant part in paleosols, remain largely unknown and
require further investigation. |
first_indexed | 2024-12-23T05:31:24Z |
format | Article |
id | doaj.art-8e768bd34651492787ee56ed0f8679d7 |
institution | Directory Open Access Journal |
issn | 2199-3971 2199-398X |
language | English |
last_indexed | 2024-12-23T05:31:24Z |
publishDate | 2016-10-01 |
publisher | Copernicus Publications |
record_format | Article |
series | SOIL |
spelling | doaj.art-8e768bd34651492787ee56ed0f8679d72022-12-21T17:58:27ZengCopernicus PublicationsSOIL2199-39712199-398X2016-10-012453754910.5194/soil-2-537-2016Paleosols can promote root growth of recent vegetation – a case study from the sandy soil–sediment sequence Rakt, the NetherlandsM. I. Gocke0F. Kessler1J. M. van Mourik2B. Jansen3G. L. B. Wiesenberg4Department of Geography, University of Zurich, Winterthurerstr. 190, 8057 Zurich, SwitzerlandDepartment of Geography, University of Zurich, Winterthurerstr. 190, 8057 Zurich, SwitzerlandIBED-Paleoecology, University of Amsterdam, P.O. Box 94240, Amsterdam 1090 GE, the NetherlandsIBED-Earth Surface Science, University of Amsterdam, P.O. Box 94240, Amsterdam 1090 GE, the NetherlandsDepartment of Geography, University of Zurich, Winterthurerstr. 190, 8057 Zurich, SwitzerlandSoil studies commonly comprise the uppermost meter for tracing, e.g., soil development. However, the maximum rooting depth of various plants significantly exceeds this depth. We hypothesized that deeper parts of the soil, soil parent material and especially paleosols provide beneficial conditions in terms of, e.g., nutrient contents, thus supporting their utilization and exploitation by deep roots. We aimed to decipher the different phases of soil formation in Dutch drift sands and cover sands. The study site is located at Bedafse Bergen (southeastern Netherlands) in a 200-year-old oak stand. A recent Podzol developed on drift sand covering a Plaggic Anthrosol that was piled up on a relict Podzol on Late Glacial eolian cover sand. Root-free soil and sediment samples, collected in 10–15 cm depth increments, were subjected to a multi-proxy physical and geochemical approach. The Plaggic Anthrosol revealed low bulk density and high phosphorous and organic carbon contents, whereas the relict Podzol was characterized by high iron and aluminum contents. Frequencies of fine (diameter ≤ 2 mm) and medium roots (2–5 mm) were determined on horizontal levels and the profile wall for a detailed pseudo-three-dimensional insight. On horizontal levels, living roots were most abundant in the uppermost part of the relict Podzol with ca. 4450 and 220 m<sup>−2</sup>, significantly exceeding topsoil root abundances. Roots of oak trees thus benefited from the favorable growth conditions in the nutrient-rich Plaggic Anthrosol, whereas increased compactness and high aluminum contents of the relict Podzol caused a strong decrease of roots. The approach demonstrated the benefit of comprehensive root investigation to support interpretation of soil profiles, as fine roots can be significantly underestimated when quantified at the profile wall. The possible rooting of soil parent material and paleosols long after their burial confirmed recent studies on the potential influence of rooting to overprint sediment–(paleo)soil sequences of various ages, sedimentary and climatic settings. Potential consequences of deep rooting for terrestrial deep carbon stocks, located to a relevant part in paleosols, remain largely unknown and require further investigation.http://www.soil-journal.net/2/537/2016/soil-2-537-2016.pdf |
spellingShingle | M. I. Gocke F. Kessler J. M. van Mourik B. Jansen G. L. B. Wiesenberg Paleosols can promote root growth of recent vegetation – a case study from the sandy soil–sediment sequence Rakt, the Netherlands SOIL |
title | Paleosols can promote root growth of recent vegetation – a case study
from the sandy soil–sediment sequence Rakt, the Netherlands |
title_full | Paleosols can promote root growth of recent vegetation – a case study
from the sandy soil–sediment sequence Rakt, the Netherlands |
title_fullStr | Paleosols can promote root growth of recent vegetation – a case study
from the sandy soil–sediment sequence Rakt, the Netherlands |
title_full_unstemmed | Paleosols can promote root growth of recent vegetation – a case study
from the sandy soil–sediment sequence Rakt, the Netherlands |
title_short | Paleosols can promote root growth of recent vegetation – a case study
from the sandy soil–sediment sequence Rakt, the Netherlands |
title_sort | paleosols can promote root growth of recent vegetation ndash a case study from the sandy soil ndash sediment sequence rakt the netherlands |
url | http://www.soil-journal.net/2/537/2016/soil-2-537-2016.pdf |
work_keys_str_mv | AT migocke paleosolscanpromoterootgrowthofrecentvegetationndashacasestudyfromthesandysoilndashsedimentsequenceraktthenetherlands AT fkessler paleosolscanpromoterootgrowthofrecentvegetationndashacasestudyfromthesandysoilndashsedimentsequenceraktthenetherlands AT jmvanmourik paleosolscanpromoterootgrowthofrecentvegetationndashacasestudyfromthesandysoilndashsedimentsequenceraktthenetherlands AT bjansen paleosolscanpromoterootgrowthofrecentvegetationndashacasestudyfromthesandysoilndashsedimentsequenceraktthenetherlands AT glbwiesenberg paleosolscanpromoterootgrowthofrecentvegetationndashacasestudyfromthesandysoilndashsedimentsequenceraktthenetherlands |