Obscurins: Goliaths and Davids take over non-muscle tissues.

Obscurins comprise a family of proteins originally identified in striated muscles, where they play essential roles in myofibrillogenesis, cytoskeletal organization, and Ca(2+) homeostasis. They are encoded by the single OBSCN gene, and are composed of tandem adhesion domains and signaling motifs. To...

Full description

Bibliographic Details
Main Authors: Maegen A Ackermann, Marey Shriver, Nicole A Perry, Li-Yen R Hu, Aikaterini Kontrogianni-Konstantopoulos
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24516603/?tool=EBI
_version_ 1818459774216306688
author Maegen A Ackermann
Marey Shriver
Nicole A Perry
Li-Yen R Hu
Aikaterini Kontrogianni-Konstantopoulos
author_facet Maegen A Ackermann
Marey Shriver
Nicole A Perry
Li-Yen R Hu
Aikaterini Kontrogianni-Konstantopoulos
author_sort Maegen A Ackermann
collection DOAJ
description Obscurins comprise a family of proteins originally identified in striated muscles, where they play essential roles in myofibrillogenesis, cytoskeletal organization, and Ca(2+) homeostasis. They are encoded by the single OBSCN gene, and are composed of tandem adhesion domains and signaling motifs. To date, two giant obscurin isoforms have been described in detail that differ only at the extreme COOH-terminus; while obscurin-A (∼720 kDa) contains a non-modular COOH-terminus that harbors binding sites for the adaptor proteins ankyrins, obscurin-B (∼870 kDa) contains two COOH-terminal serine-threonine kinase domains preceded by adhesion motifs. Besides the two known giant obscurins, a thorough search of transcript databases suggests that complex alternative splicing of the obscurin transcript results in the generation of additional giant as well as small isoforms with molecular masses ranging between ∼50-970 kDa. These novel isoforms share common domains with the characterized isoforms, but also contain unique regions. Using a panel of highly specific antibodies directed against epitopes spanning the entire length of giant obscurins, we employed western blotting and immunohistochemistry to perform a systematic and comprehensive characterization of the expression profile of obscurins in muscle and non-muscle tissues. Our studies demonstrate for the first time that obscurins are not restricted to striated muscles, but are abundantly expressed in several tissues and organs including brain, skin, kidney, liver, spleen, and lung. While some obscurin isoforms are ubiquitously expressed, others are preferentially present in specific tissues and organs. Moreover, obscurins are present in select structures and cell types where they assume nuclear, cytosolic, and membrane distributions. Given the ubiquitous expression of some obscurins, along with the preferential expression of others, it becomes apparent that obscurins may play common and unique roles, respectively, in the regulation and maintenance of cell homeostasis in various tissues and organs throughout the body.
first_indexed 2024-12-14T23:19:42Z
format Article
id doaj.art-8e8df6fc9f4f4f4b915c4ca2432fea1c
institution Directory Open Access Journal
issn 1932-6203
language English
last_indexed 2024-12-14T23:19:42Z
publishDate 2014-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj.art-8e8df6fc9f4f4f4b915c4ca2432fea1c2022-12-21T22:44:00ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-0192e8816210.1371/journal.pone.0088162Obscurins: Goliaths and Davids take over non-muscle tissues.Maegen A AckermannMarey ShriverNicole A PerryLi-Yen R HuAikaterini Kontrogianni-KonstantopoulosObscurins comprise a family of proteins originally identified in striated muscles, where they play essential roles in myofibrillogenesis, cytoskeletal organization, and Ca(2+) homeostasis. They are encoded by the single OBSCN gene, and are composed of tandem adhesion domains and signaling motifs. To date, two giant obscurin isoforms have been described in detail that differ only at the extreme COOH-terminus; while obscurin-A (∼720 kDa) contains a non-modular COOH-terminus that harbors binding sites for the adaptor proteins ankyrins, obscurin-B (∼870 kDa) contains two COOH-terminal serine-threonine kinase domains preceded by adhesion motifs. Besides the two known giant obscurins, a thorough search of transcript databases suggests that complex alternative splicing of the obscurin transcript results in the generation of additional giant as well as small isoforms with molecular masses ranging between ∼50-970 kDa. These novel isoforms share common domains with the characterized isoforms, but also contain unique regions. Using a panel of highly specific antibodies directed against epitopes spanning the entire length of giant obscurins, we employed western blotting and immunohistochemistry to perform a systematic and comprehensive characterization of the expression profile of obscurins in muscle and non-muscle tissues. Our studies demonstrate for the first time that obscurins are not restricted to striated muscles, but are abundantly expressed in several tissues and organs including brain, skin, kidney, liver, spleen, and lung. While some obscurin isoforms are ubiquitously expressed, others are preferentially present in specific tissues and organs. Moreover, obscurins are present in select structures and cell types where they assume nuclear, cytosolic, and membrane distributions. Given the ubiquitous expression of some obscurins, along with the preferential expression of others, it becomes apparent that obscurins may play common and unique roles, respectively, in the regulation and maintenance of cell homeostasis in various tissues and organs throughout the body.https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24516603/?tool=EBI
spellingShingle Maegen A Ackermann
Marey Shriver
Nicole A Perry
Li-Yen R Hu
Aikaterini Kontrogianni-Konstantopoulos
Obscurins: Goliaths and Davids take over non-muscle tissues.
PLoS ONE
title Obscurins: Goliaths and Davids take over non-muscle tissues.
title_full Obscurins: Goliaths and Davids take over non-muscle tissues.
title_fullStr Obscurins: Goliaths and Davids take over non-muscle tissues.
title_full_unstemmed Obscurins: Goliaths and Davids take over non-muscle tissues.
title_short Obscurins: Goliaths and Davids take over non-muscle tissues.
title_sort obscurins goliaths and davids take over non muscle tissues
url https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24516603/?tool=EBI
work_keys_str_mv AT maegenaackermann obscurinsgoliathsanddavidstakeovernonmuscletissues
AT mareyshriver obscurinsgoliathsanddavidstakeovernonmuscletissues
AT nicoleaperry obscurinsgoliathsanddavidstakeovernonmuscletissues
AT liyenrhu obscurinsgoliathsanddavidstakeovernonmuscletissues
AT aikaterinikontrogiannikonstantopoulos obscurinsgoliathsanddavidstakeovernonmuscletissues