A Soft Parameter Function Penalized Normalized Maximum Correntropy Criterion Algorithm for Sparse System Identification

A soft parameter function penalized normalized maximum correntropy criterion (SPF-NMCC) algorithm is proposed for sparse system identification. The proposed SPF-NMCC algorithm is derived on the basis of the normalized adaptive filter theory, the maximum correntropy criterion (MCC) algorithm and zero...

Full description

Bibliographic Details
Main Authors: Yingsong Li, Yanyan Wang, Rui Yang, Felix Albu
Format: Article
Language:English
Published: MDPI AG 2017-01-01
Series:Entropy
Subjects:
Online Access:http://www.mdpi.com/1099-4300/19/1/45
_version_ 1817996428833718272
author Yingsong Li
Yanyan Wang
Rui Yang
Felix Albu
author_facet Yingsong Li
Yanyan Wang
Rui Yang
Felix Albu
author_sort Yingsong Li
collection DOAJ
description A soft parameter function penalized normalized maximum correntropy criterion (SPF-NMCC) algorithm is proposed for sparse system identification. The proposed SPF-NMCC algorithm is derived on the basis of the normalized adaptive filter theory, the maximum correntropy criterion (MCC) algorithm and zero-attracting techniques. A soft parameter function is incorporated into the cost function of the traditional normalized MCC (NMCC) algorithm to exploit the sparsity properties of the sparse signals. The proposed SPF-NMCC algorithm is mathematically derived in detail. As a result, the proposed SPF-NMCC algorithm can provide an efficient zero attractor term to effectively attract the zero taps and near-zero coefficients to zero, and, hence, it can speed up the convergence. Furthermore, the estimation behaviors are obtained by estimating a sparse system and a sparse acoustic echo channel. Computer simulation results indicate that the proposed SPF-NMCC algorithm can achieve a better performance in comparison with the MCC, NMCC, LMS (least mean square) algorithms and their zero attraction forms in terms of both convergence speed and steady-state performance.
first_indexed 2024-04-14T02:22:08Z
format Article
id doaj.art-8e9ace27fe054274b7f07e60320f0882
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-04-14T02:22:08Z
publishDate 2017-01-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-8e9ace27fe054274b7f07e60320f08822022-12-22T02:17:59ZengMDPI AGEntropy1099-43002017-01-011914510.3390/e19010045e19010045A Soft Parameter Function Penalized Normalized Maximum Correntropy Criterion Algorithm for Sparse System IdentificationYingsong Li0Yanyan Wang1Rui Yang2Felix Albu3College of Information and Communications Engineering, Harbin Engineering University, Harbin 150001, ChinaCollege of Information and Communications Engineering, Harbin Engineering University, Harbin 150001, ChinaCollege of Engineering, Huazhong Agricultural University, Wuhan 430070, ChinaDepartment of Electronics, Valahia University of Targoviste, Targoviste 130082, RomaniaA soft parameter function penalized normalized maximum correntropy criterion (SPF-NMCC) algorithm is proposed for sparse system identification. The proposed SPF-NMCC algorithm is derived on the basis of the normalized adaptive filter theory, the maximum correntropy criterion (MCC) algorithm and zero-attracting techniques. A soft parameter function is incorporated into the cost function of the traditional normalized MCC (NMCC) algorithm to exploit the sparsity properties of the sparse signals. The proposed SPF-NMCC algorithm is mathematically derived in detail. As a result, the proposed SPF-NMCC algorithm can provide an efficient zero attractor term to effectively attract the zero taps and near-zero coefficients to zero, and, hence, it can speed up the convergence. Furthermore, the estimation behaviors are obtained by estimating a sparse system and a sparse acoustic echo channel. Computer simulation results indicate that the proposed SPF-NMCC algorithm can achieve a better performance in comparison with the MCC, NMCC, LMS (least mean square) algorithms and their zero attraction forms in terms of both convergence speed and steady-state performance.http://www.mdpi.com/1099-4300/19/1/45adaptive filtersmaximum correntropy criterionkernel frameworksparse adaptive filteringsoft parameter functionzero attracting algorithm
spellingShingle Yingsong Li
Yanyan Wang
Rui Yang
Felix Albu
A Soft Parameter Function Penalized Normalized Maximum Correntropy Criterion Algorithm for Sparse System Identification
Entropy
adaptive filters
maximum correntropy criterion
kernel framework
sparse adaptive filtering
soft parameter function
zero attracting algorithm
title A Soft Parameter Function Penalized Normalized Maximum Correntropy Criterion Algorithm for Sparse System Identification
title_full A Soft Parameter Function Penalized Normalized Maximum Correntropy Criterion Algorithm for Sparse System Identification
title_fullStr A Soft Parameter Function Penalized Normalized Maximum Correntropy Criterion Algorithm for Sparse System Identification
title_full_unstemmed A Soft Parameter Function Penalized Normalized Maximum Correntropy Criterion Algorithm for Sparse System Identification
title_short A Soft Parameter Function Penalized Normalized Maximum Correntropy Criterion Algorithm for Sparse System Identification
title_sort soft parameter function penalized normalized maximum correntropy criterion algorithm for sparse system identification
topic adaptive filters
maximum correntropy criterion
kernel framework
sparse adaptive filtering
soft parameter function
zero attracting algorithm
url http://www.mdpi.com/1099-4300/19/1/45
work_keys_str_mv AT yingsongli asoftparameterfunctionpenalizednormalizedmaximumcorrentropycriterionalgorithmforsparsesystemidentification
AT yanyanwang asoftparameterfunctionpenalizednormalizedmaximumcorrentropycriterionalgorithmforsparsesystemidentification
AT ruiyang asoftparameterfunctionpenalizednormalizedmaximumcorrentropycriterionalgorithmforsparsesystemidentification
AT felixalbu asoftparameterfunctionpenalizednormalizedmaximumcorrentropycriterionalgorithmforsparsesystemidentification
AT yingsongli softparameterfunctionpenalizednormalizedmaximumcorrentropycriterionalgorithmforsparsesystemidentification
AT yanyanwang softparameterfunctionpenalizednormalizedmaximumcorrentropycriterionalgorithmforsparsesystemidentification
AT ruiyang softparameterfunctionpenalizednormalizedmaximumcorrentropycriterionalgorithmforsparsesystemidentification
AT felixalbu softparameterfunctionpenalizednormalizedmaximumcorrentropycriterionalgorithmforsparsesystemidentification