An optimized approach for solar concentrating parabolic dish based on particle swarm optimization-genetic algorithm

Parabolic dish concentrators have demonstrated the highest thermal and optical efficiencies among the available concentrator options. This paper proposes a novel design approach for fabricating large parabolic dish concentrators by employing compliant petals optimized through Particle Swarm Optimiza...

Full description

Bibliographic Details
Main Authors: Lifang Li, Yanlong Zhang, Heng Li, Rongqiang Liu, Pengzhen Guo
Format: Article
Language:English
Published: Elsevier 2024-02-01
Series:Heliyon
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405844024021960
Description
Summary:Parabolic dish concentrators have demonstrated the highest thermal and optical efficiencies among the available concentrator options. This paper proposes a novel design approach for fabricating large parabolic dish concentrators by employing compliant petals optimized through Particle Swarm Optimization-Genetic Algorithm (PSO-GA). The design concept involves using cables to pull the outer corners of the petals towards the center, resulting in the creation of finely formed dish mirrors. These mirrors are constructed from thin, optimal-shaped metal petals with highly reflective surfaces. In addition, an analytical model is presented to optimize the bending stiffness of the petals by strategically arranging punched holes using PSO-GA. The proposed design concept is validated through the application of Finite Element Analysis and ray tracing software, specifically LightTools, as well as laboratory experiments. Based on the demonstration with a 1m-diameter parabolic dish, it was observed that a receiver surface with a radius of 3.5 cm could achieve an impressive sunlight collection efficiency of up to 98%. This innovative design approach offers several advantages, including simplified fabrication and transportation of flat mirror elements to field sites, which can potentially lead to cost reductions and highly efficient solar energy solutions.
ISSN:2405-8440