Greedy Algorithms for Approximating the Diameter of Machine Learning Datasets in Multidimensional Euclidean Space: Experimental Results
<p class="Abstract">Finding the diameter of a dataset in multidimensional Euclidean space is a well-established problem, with well-known algorithms. However, most of the algorithms found in the literature do not scale well with large values of data dimension, so the time complexity g...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Ediciones Universidad de Salamanca
2018-12-01
|
Series: | Advances in Distributed Computing and Artificial Intelligence Journal |
Subjects: | |
Online Access: | https://revistas.usal.es/index.php/2255-2863/article/view/18623 |