Layer-by-layer assembly of imogolite nanotubes and polyelectrolytes into core-shell particles and their conversion to hierarchically porous spheres

Core-shell particles were prepared by the layer-by-layer (LbL) assembly of imogolite (IMO) nanotubes and poly(sodium 4-styrenesulfonate) (PSS) on polystyrene particles (diameter: 800 nm) coated preliminarily with poly(diallyldimethylammonium chloride) (PDDA). PSS and imogolite were alternately adsor...

Full description

Bibliographic Details
Main Author: Yoshiyuki Kuroda et al
Format: Article
Language:English
Published: Taylor & Francis Group 2008-01-01
Series:Science and Technology of Advanced Materials
Subjects:
Online Access:http://www.iop.org/EJ/abstract/1468-6996/9/2/025018
Description
Summary:Core-shell particles were prepared by the layer-by-layer (LbL) assembly of imogolite (IMO) nanotubes and poly(sodium 4-styrenesulfonate) (PSS) on polystyrene particles (diameter: 800 nm) coated preliminarily with poly(diallyldimethylammonium chloride) (PDDA). PSS and imogolite were alternately adsorbed on the particles to form core-shell particles with one to three bilayers of PSS/IMO. Macroporous hollow spheres were formed by removing polystyrene cores via heat treatment or extraction when the number of bilayers was 2 or 3. The sample formed by extraction (the number of bilayer was 3) showed only macroporosity and PSS remained in the shell, whereas the heat-treated sample showed hierarchical micro- and macroporosities. When the diameter of polystyrene particles decreased from 800 nm to 300 or 100 nm, hollow spheres were deformed because of the increase in the relative length of imogolite nanotubes against the size of polystyrene particles. Imogolite is a promising building block of hierarchically porous materials with core-shell morphologies using LbL assembly.
ISSN:1468-6996
1878-5514