On Machine Learning in Clinical Interpretation of Retinal Diseases Using OCT Images

Optical coherence tomography (OCT) is a noninvasive imaging technique that provides high-resolution cross-sectional retina images, enabling ophthalmologists to gather crucial information for diagnosing various retinal diseases. Despite its benefits, manual analysis of OCT images is time-consuming an...

Full description

Bibliographic Details
Main Authors: Prakash Kumar Karn, Waleed H. Abdulla
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Bioengineering
Subjects:
Online Access:https://www.mdpi.com/2306-5354/10/4/407
Description
Summary:Optical coherence tomography (OCT) is a noninvasive imaging technique that provides high-resolution cross-sectional retina images, enabling ophthalmologists to gather crucial information for diagnosing various retinal diseases. Despite its benefits, manual analysis of OCT images is time-consuming and heavily dependent on the personal experience of the analyst. This paper focuses on using machine learning to analyse OCT images in the clinical interpretation of retinal diseases. The complexity of understanding the biomarkers present in OCT images has been a challenge for many researchers, particularly those from nonclinical disciplines. This paper aims to provide an overview of the current state-of-the-art OCT image processing techniques, including image denoising and layer segmentation. It also highlights the potential of machine learning algorithms to automate the analysis of OCT images, reducing time consumption and improving diagnostic accuracy. Using machine learning in OCT image analysis can mitigate the limitations of manual analysis methods and provide a more reliable and objective approach to diagnosing retinal diseases. This paper will be of interest to ophthalmologists, researchers, and data scientists working in the field of retinal disease diagnosis and machine learning. By presenting the latest advancements in OCT image analysis using machine learning, this paper will contribute to the ongoing efforts to improve the diagnostic accuracy of retinal diseases.
ISSN:2306-5354