Evaluasi Ekstraksi Fitur GLCM dan LBP Menggunakan Multikernel SVM untuk Klasifikasi Batik

Batik as one of Indonesia's cultural heritages has various types, motifs and colors. A batik may have almost the same motif with a different color or vice versa, therefore it requires a classification of batik motifs. In this study, a printed batik was used with various coastal batik motifs in...

Full description

Bibliographic Details
Main Authors: Pulung Nurtantio Andono, Eko Hari Rachmawanto
Format: Article
Language:English
Published: Ikatan Ahli Informatika Indonesia 2021-02-01
Series:Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
Subjects:
Online Access:http://jurnal.iaii.or.id/index.php/RESTI/article/view/2615
_version_ 1797331493712822272
author Pulung Nurtantio Andono
Eko Hari Rachmawanto
author_facet Pulung Nurtantio Andono
Eko Hari Rachmawanto
author_sort Pulung Nurtantio Andono
collection DOAJ
description Batik as one of Indonesia's cultural heritages has various types, motifs and colors. A batik may have almost the same motif with a different color or vice versa, therefore it requires a classification of batik motifs. In this study, a printed batik was used with various coastal batik motifs in Central Java. The algorithm for classification is selected Support Vector Machine (SVM) with feature extraction of the Gray Level Co-Occurrence Matrix (GLCM) and Local Binary Pattern (LBP). SVM has the advantage of grouping data with small amounts and short operation times. GLCM as an extractive feature for recognizing batik textures and LBP was chosen to do spot pattern recognition. In the experiment, we have used 160 images of batik motifs which are divided into two, namely 128 training data and 32 testing data. The accuracy results obtained from the SVM, GLCM and LBP algorithms produce 100% accuracy in polyniomial, linear and gaussian kernels with distances at GLCM 1, 3, and 5, where at a distance of 1 linear kernel is 78.1%, gaussian 93.7%. At a distance of 3 linear kernels 75%, gaussian 87.5% and at a distance of 5 linear kernels 84.3%, gaussian 87.5%. In the SVM and GLCM algorithms the resulting accuracy is at a distance of 1 with a polynomial kernel 96.8%, linear 68.7%, and gaussian 75%. At distance 3, the polynomial kernel is 100%, linear 71.8%, and gaussian 78.1%, while for distance 5, the polynomial kernel is 87.5%, linear 75%, and gaussian 81.2%.
first_indexed 2024-03-08T07:35:22Z
format Article
id doaj.art-8ecb37fedc1f4e47b3fcb91464da4851
institution Directory Open Access Journal
issn 2580-0760
language English
last_indexed 2024-03-08T07:35:22Z
publishDate 2021-02-01
publisher Ikatan Ahli Informatika Indonesia
record_format Article
series Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
spelling doaj.art-8ecb37fedc1f4e47b3fcb91464da48512024-02-02T19:04:36ZengIkatan Ahli Informatika IndonesiaJurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)2580-07602021-02-01511910.29207/resti.v5i1.26152615Evaluasi Ekstraksi Fitur GLCM dan LBP Menggunakan Multikernel SVM untuk Klasifikasi BatikPulung Nurtantio Andono0Eko Hari Rachmawanto1Universitas Dian NuswantoroUniversitas Dian NuswantoroBatik as one of Indonesia's cultural heritages has various types, motifs and colors. A batik may have almost the same motif with a different color or vice versa, therefore it requires a classification of batik motifs. In this study, a printed batik was used with various coastal batik motifs in Central Java. The algorithm for classification is selected Support Vector Machine (SVM) with feature extraction of the Gray Level Co-Occurrence Matrix (GLCM) and Local Binary Pattern (LBP). SVM has the advantage of grouping data with small amounts and short operation times. GLCM as an extractive feature for recognizing batik textures and LBP was chosen to do spot pattern recognition. In the experiment, we have used 160 images of batik motifs which are divided into two, namely 128 training data and 32 testing data. The accuracy results obtained from the SVM, GLCM and LBP algorithms produce 100% accuracy in polyniomial, linear and gaussian kernels with distances at GLCM 1, 3, and 5, where at a distance of 1 linear kernel is 78.1%, gaussian 93.7%. At a distance of 3 linear kernels 75%, gaussian 87.5% and at a distance of 5 linear kernels 84.3%, gaussian 87.5%. In the SVM and GLCM algorithms the resulting accuracy is at a distance of 1 with a polynomial kernel 96.8%, linear 68.7%, and gaussian 75%. At distance 3, the polynomial kernel is 100%, linear 71.8%, and gaussian 78.1%, while for distance 5, the polynomial kernel is 87.5%, linear 75%, and gaussian 81.2%.http://jurnal.iaii.or.id/index.php/RESTI/article/view/2615batik, classification, svm, knn, feature extraction
spellingShingle Pulung Nurtantio Andono
Eko Hari Rachmawanto
Evaluasi Ekstraksi Fitur GLCM dan LBP Menggunakan Multikernel SVM untuk Klasifikasi Batik
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
batik, classification, svm, knn, feature extraction
title Evaluasi Ekstraksi Fitur GLCM dan LBP Menggunakan Multikernel SVM untuk Klasifikasi Batik
title_full Evaluasi Ekstraksi Fitur GLCM dan LBP Menggunakan Multikernel SVM untuk Klasifikasi Batik
title_fullStr Evaluasi Ekstraksi Fitur GLCM dan LBP Menggunakan Multikernel SVM untuk Klasifikasi Batik
title_full_unstemmed Evaluasi Ekstraksi Fitur GLCM dan LBP Menggunakan Multikernel SVM untuk Klasifikasi Batik
title_short Evaluasi Ekstraksi Fitur GLCM dan LBP Menggunakan Multikernel SVM untuk Klasifikasi Batik
title_sort evaluasi ekstraksi fitur glcm dan lbp menggunakan multikernel svm untuk klasifikasi batik
topic batik, classification, svm, knn, feature extraction
url http://jurnal.iaii.or.id/index.php/RESTI/article/view/2615
work_keys_str_mv AT pulungnurtantioandono evaluasiekstraksifiturglcmdanlbpmenggunakanmultikernelsvmuntukklasifikasibatik
AT ekoharirachmawanto evaluasiekstraksifiturglcmdanlbpmenggunakanmultikernelsvmuntukklasifikasibatik