Metalenses Based on Symmetric Slab Waveguide and c-TiO2: Efficient Polarization-Insensitive Focusing at Visible Wavelengths

A key goal of metalens research is to achieve wavefront shaping of light using optical elements with thicknesses on the order of the wavelength. Here we demonstrate ultrathin highly efficient crystalline titanium dioxide metalenses at blue, green, and red wavelengths (λ0 = 453 nm, 532 nm,...

Full description

Bibliographic Details
Main Authors: Yaoyao Liang, Zhongchao Wei, Jianping Guo, Faqiang Wang, Hongyun Meng, Hongzhan Liu
Format: Article
Language:English
Published: MDPI AG 2018-09-01
Series:Nanomaterials
Subjects:
Online Access:http://www.mdpi.com/2079-4991/8/9/699
Description
Summary:A key goal of metalens research is to achieve wavefront shaping of light using optical elements with thicknesses on the order of the wavelength. Here we demonstrate ultrathin highly efficient crystalline titanium dioxide metalenses at blue, green, and red wavelengths (λ0 = 453 nm, 532 nm, and 633 nm, respectively) based on symmetric slab waveguide theory. These metalenses are less than 488 nm-thick and capable of focusing incident light into very symmetric diffraction-limited spots with strehl ratio and efficiency as high as 0.96 and 83%, respectively. Further quantitative characterizations about metalenses’ peak focusing intensities and focal spot sizes show good agreement with theoretical calculation. Besides, the metalenses suffer only about 10% chromatic deviation from the ideal spots in visible spectrum. In contrast with Pancharatnam–Berry phase mechanism, which limit their incident light at circular polarization, the proposed method enables metalenses polarization-insensitive to incident light.
ISSN:2079-4991