Cross-Scale KNN Image Transformer for Image Restoration

Numerous image restoration approaches have been proposed based on attention mechanism, achieving superior performance to convolutional neural networks (CNNs) based counterparts. However, they do not leverage the attention model in a form fully suited to the image restoration tasks. In this paper, we...

Full description

Bibliographic Details
Main Authors: Hunsang Lee, Hyesong Choi, Kwanghoon Sohn, Dongbo Min
Format: Article
Language:English
Published: IEEE 2023-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10036436/
Description
Summary:Numerous image restoration approaches have been proposed based on attention mechanism, achieving superior performance to convolutional neural networks (CNNs) based counterparts. However, they do not leverage the attention model in a form fully suited to the image restoration tasks. In this paper, we propose an image restoration network with a novel attention mechanism, called cross-scale <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-NN image Transformer (CS-KiT), that effectively considers several factors such as locality, non-locality, and cross-scale aggregation, which are essential to image restoration. To achieve locality and non-locality, the CS-KiT builds <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-nearest neighbor relation of local patches and aggregates similar patches through local attention. To induce cross-scale aggregation, we ensure that each local patch embraces different scale information with scale-aware patch embedding (SPE) which predicts an input patch scale through a combination of multi-scale convolution branches. We show the effectiveness of the CS-KiT with experimental results, outperforming state-of-the-art restoration approaches on image denoising, deblurring, and deraining benchmarks.
ISSN:2169-3536