Enhancing Heat Transfer in Blood Hybrid Nanofluid Flow with <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="bold-italic">A</mi><mi mathvariant="bold-italic">g</mi></mrow></semantics></math></inline-formula>–<inline-formula><math display="inline"><semantics><mrow><mi mathvariant="bold-italic">T</mi><mi mathvariant="bold-italic">i</mi><msub><mi mathvariant="bold-italic">O</mi><mn mathvariant="bold">2</mn></msub></mrow></semantics></math></inline-formula> Nanoparticles and Electrical Field in a Tilted Cylindrical W-Shape Stenosis Artery: A Finite Difference Approach

The present research examines the unsteady sensitivity analysis and entropy generation of blood-based silver–titanium dioxide flow in a tilted cylindrical W-shape symmetric stenosis artery. The study considers various factors such as the electric field, joule heating, viscous dissipation, and heat s...

Full description

Bibliographic Details
Main Authors: Ebrahem A. Algehyne, N. Ameer Ahammad, Mohamed E. Elnair, Mohamed Zidan, Yasir Y. Alhusayni, Babikir Osman El-Bashir, Anwar Saeed, Ali Saleh Alshomrani, Faris Alzahrani
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/6/1242
_version_ 1797592517744525312
author Ebrahem A. Algehyne
N. Ameer Ahammad
Mohamed E. Elnair
Mohamed Zidan
Yasir Y. Alhusayni
Babikir Osman El-Bashir
Anwar Saeed
Ali Saleh Alshomrani
Faris Alzahrani
author_facet Ebrahem A. Algehyne
N. Ameer Ahammad
Mohamed E. Elnair
Mohamed Zidan
Yasir Y. Alhusayni
Babikir Osman El-Bashir
Anwar Saeed
Ali Saleh Alshomrani
Faris Alzahrani
author_sort Ebrahem A. Algehyne
collection DOAJ
description The present research examines the unsteady sensitivity analysis and entropy generation of blood-based silver–titanium dioxide flow in a tilted cylindrical W-shape symmetric stenosis artery. The study considers various factors such as the electric field, joule heating, viscous dissipation, and heat source, while taking into account a two-dimensional pulsatile blood flow and periodic body acceleration. The finite difference method is employed to solve the governing equations due to the highly nonlinear nature of the flow equations, which requires a robust numerical technique. The utilization of the response surface methodology is commonly observed in optimization procedures. Drawing inspiration from drug delivery techniques used in cardiovascular therapies, it has been proposed to infuse blood with a uniform distribution of biocompatible nanoparticles. The figures depict the effects of significant parameters on the flow field, such as the electric field, Hartmann number, nanoparticle volume fraction, body acceleration amplitude, Reynolds number, Grashof number, and thermal radiation, on velocity, temperature (nondimensional), entropy generation, flow rate, resistance to flow, wall shear stress, and Nusselt number. The velocity and temperature profiles improve with higher values of the wall slip parameter. The flow rate profiles increase with an increment in wall velocity but decrease with the Womersley number. Increasing the intensity of radiation and decreasing magnetic fields both result in a decrease in the rate of heat transfer. The blood temperature is higher with the inclusion of hybrid nanoparticles than the unitary nanoparticles. The total entropy generation profiles increase for higher values of the Brickman number and temperature difference parameters. Unitary nanoparticles exhibit a slightly higher total entropy generation than hybrid nanoparticles, particularly when positioned slightly away from the center of the artery. The total entropy production decreases by 17.97% when the thermal radiation is increased from absence to 3. In contrast, increasing the amplitude of body acceleration from 0.5 to 2 results in a significant enhancement of 76.14% in the total entropy production.
first_indexed 2024-03-11T01:53:12Z
format Article
id doaj.art-8ef607842b604161ab1ea013db715074
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-11T01:53:12Z
publishDate 2023-06-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-8ef607842b604161ab1ea013db7150742023-11-18T12:51:26ZengMDPI AGSymmetry2073-89942023-06-01156124210.3390/sym15061242Enhancing Heat Transfer in Blood Hybrid Nanofluid Flow with <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="bold-italic">A</mi><mi mathvariant="bold-italic">g</mi></mrow></semantics></math></inline-formula>–<inline-formula><math display="inline"><semantics><mrow><mi mathvariant="bold-italic">T</mi><mi mathvariant="bold-italic">i</mi><msub><mi mathvariant="bold-italic">O</mi><mn mathvariant="bold">2</mn></msub></mrow></semantics></math></inline-formula> Nanoparticles and Electrical Field in a Tilted Cylindrical W-Shape Stenosis Artery: A Finite Difference ApproachEbrahem A. Algehyne0N. Ameer Ahammad1Mohamed E. Elnair2Mohamed Zidan3Yasir Y. Alhusayni4Babikir Osman El-Bashir5Anwar Saeed6Ali Saleh Alshomrani7Faris Alzahrani8Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi ArabiaDepartment of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi ArabiaDepartment of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi ArabiaDepartment of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi ArabiaDepartment of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi ArabiaDepartment of Physics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi ArabiaCentre of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King Mongkut’s University of Technology, Thonburi (KMUTT), Bangkok 10140, ThailandMathematical Modelling and Applied Computation Research Group (MMAC), Department of Mathematics, King Abdul Aziz University, Jeddah 21589, Saudi ArabiaMathematical Modelling and Applied Computation Research Group (MMAC), Department of Mathematics, King Abdul Aziz University, Jeddah 21589, Saudi ArabiaThe present research examines the unsteady sensitivity analysis and entropy generation of blood-based silver–titanium dioxide flow in a tilted cylindrical W-shape symmetric stenosis artery. The study considers various factors such as the electric field, joule heating, viscous dissipation, and heat source, while taking into account a two-dimensional pulsatile blood flow and periodic body acceleration. The finite difference method is employed to solve the governing equations due to the highly nonlinear nature of the flow equations, which requires a robust numerical technique. The utilization of the response surface methodology is commonly observed in optimization procedures. Drawing inspiration from drug delivery techniques used in cardiovascular therapies, it has been proposed to infuse blood with a uniform distribution of biocompatible nanoparticles. The figures depict the effects of significant parameters on the flow field, such as the electric field, Hartmann number, nanoparticle volume fraction, body acceleration amplitude, Reynolds number, Grashof number, and thermal radiation, on velocity, temperature (nondimensional), entropy generation, flow rate, resistance to flow, wall shear stress, and Nusselt number. The velocity and temperature profiles improve with higher values of the wall slip parameter. The flow rate profiles increase with an increment in wall velocity but decrease with the Womersley number. Increasing the intensity of radiation and decreasing magnetic fields both result in a decrease in the rate of heat transfer. The blood temperature is higher with the inclusion of hybrid nanoparticles than the unitary nanoparticles. The total entropy generation profiles increase for higher values of the Brickman number and temperature difference parameters. Unitary nanoparticles exhibit a slightly higher total entropy generation than hybrid nanoparticles, particularly when positioned slightly away from the center of the artery. The total entropy production decreases by 17.97% when the thermal radiation is increased from absence to 3. In contrast, increasing the amplitude of body acceleration from 0.5 to 2 results in a significant enhancement of 76.14% in the total entropy production.https://www.mdpi.com/2073-8994/15/6/1242heat transferEMHDentropy generationstenosed arteryfinite difference method
spellingShingle Ebrahem A. Algehyne
N. Ameer Ahammad
Mohamed E. Elnair
Mohamed Zidan
Yasir Y. Alhusayni
Babikir Osman El-Bashir
Anwar Saeed
Ali Saleh Alshomrani
Faris Alzahrani
Enhancing Heat Transfer in Blood Hybrid Nanofluid Flow with <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="bold-italic">A</mi><mi mathvariant="bold-italic">g</mi></mrow></semantics></math></inline-formula>–<inline-formula><math display="inline"><semantics><mrow><mi mathvariant="bold-italic">T</mi><mi mathvariant="bold-italic">i</mi><msub><mi mathvariant="bold-italic">O</mi><mn mathvariant="bold">2</mn></msub></mrow></semantics></math></inline-formula> Nanoparticles and Electrical Field in a Tilted Cylindrical W-Shape Stenosis Artery: A Finite Difference Approach
Symmetry
heat transfer
EMHD
entropy generation
stenosed artery
finite difference method
title Enhancing Heat Transfer in Blood Hybrid Nanofluid Flow with <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="bold-italic">A</mi><mi mathvariant="bold-italic">g</mi></mrow></semantics></math></inline-formula>–<inline-formula><math display="inline"><semantics><mrow><mi mathvariant="bold-italic">T</mi><mi mathvariant="bold-italic">i</mi><msub><mi mathvariant="bold-italic">O</mi><mn mathvariant="bold">2</mn></msub></mrow></semantics></math></inline-formula> Nanoparticles and Electrical Field in a Tilted Cylindrical W-Shape Stenosis Artery: A Finite Difference Approach
title_full Enhancing Heat Transfer in Blood Hybrid Nanofluid Flow with <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="bold-italic">A</mi><mi mathvariant="bold-italic">g</mi></mrow></semantics></math></inline-formula>–<inline-formula><math display="inline"><semantics><mrow><mi mathvariant="bold-italic">T</mi><mi mathvariant="bold-italic">i</mi><msub><mi mathvariant="bold-italic">O</mi><mn mathvariant="bold">2</mn></msub></mrow></semantics></math></inline-formula> Nanoparticles and Electrical Field in a Tilted Cylindrical W-Shape Stenosis Artery: A Finite Difference Approach
title_fullStr Enhancing Heat Transfer in Blood Hybrid Nanofluid Flow with <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="bold-italic">A</mi><mi mathvariant="bold-italic">g</mi></mrow></semantics></math></inline-formula>–<inline-formula><math display="inline"><semantics><mrow><mi mathvariant="bold-italic">T</mi><mi mathvariant="bold-italic">i</mi><msub><mi mathvariant="bold-italic">O</mi><mn mathvariant="bold">2</mn></msub></mrow></semantics></math></inline-formula> Nanoparticles and Electrical Field in a Tilted Cylindrical W-Shape Stenosis Artery: A Finite Difference Approach
title_full_unstemmed Enhancing Heat Transfer in Blood Hybrid Nanofluid Flow with <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="bold-italic">A</mi><mi mathvariant="bold-italic">g</mi></mrow></semantics></math></inline-formula>–<inline-formula><math display="inline"><semantics><mrow><mi mathvariant="bold-italic">T</mi><mi mathvariant="bold-italic">i</mi><msub><mi mathvariant="bold-italic">O</mi><mn mathvariant="bold">2</mn></msub></mrow></semantics></math></inline-formula> Nanoparticles and Electrical Field in a Tilted Cylindrical W-Shape Stenosis Artery: A Finite Difference Approach
title_short Enhancing Heat Transfer in Blood Hybrid Nanofluid Flow with <inline-formula><math display="inline"><semantics><mrow><mi mathvariant="bold-italic">A</mi><mi mathvariant="bold-italic">g</mi></mrow></semantics></math></inline-formula>–<inline-formula><math display="inline"><semantics><mrow><mi mathvariant="bold-italic">T</mi><mi mathvariant="bold-italic">i</mi><msub><mi mathvariant="bold-italic">O</mi><mn mathvariant="bold">2</mn></msub></mrow></semantics></math></inline-formula> Nanoparticles and Electrical Field in a Tilted Cylindrical W-Shape Stenosis Artery: A Finite Difference Approach
title_sort enhancing heat transfer in blood hybrid nanofluid flow with inline formula math display inline semantics mrow mi mathvariant bold italic a mi mi mathvariant bold italic g mi mrow semantics math inline formula inline formula math display inline semantics mrow mi mathvariant bold italic t mi mi mathvariant bold italic i mi msub mi mathvariant bold italic o mi mn mathvariant bold 2 mn msub mrow semantics math inline formula nanoparticles and electrical field in a tilted cylindrical w shape stenosis artery a finite difference approach
topic heat transfer
EMHD
entropy generation
stenosed artery
finite difference method
url https://www.mdpi.com/2073-8994/15/6/1242
work_keys_str_mv AT ebrahemaalgehyne enhancingheattransferinbloodhybridnanofluidflowwithinlineformulamathdisplayinlinesemanticsmrowmimathvariantbolditalicamimimathvariantbolditalicgmimrowsemanticsmathinlineformulainlineformulamathdisplayinlinesemanticsmrowmimathvariantbolditalictmimimathvari
AT nameerahammad enhancingheattransferinbloodhybridnanofluidflowwithinlineformulamathdisplayinlinesemanticsmrowmimathvariantbolditalicamimimathvariantbolditalicgmimrowsemanticsmathinlineformulainlineformulamathdisplayinlinesemanticsmrowmimathvariantbolditalictmimimathvari
AT mohamedeelnair enhancingheattransferinbloodhybridnanofluidflowwithinlineformulamathdisplayinlinesemanticsmrowmimathvariantbolditalicamimimathvariantbolditalicgmimrowsemanticsmathinlineformulainlineformulamathdisplayinlinesemanticsmrowmimathvariantbolditalictmimimathvari
AT mohamedzidan enhancingheattransferinbloodhybridnanofluidflowwithinlineformulamathdisplayinlinesemanticsmrowmimathvariantbolditalicamimimathvariantbolditalicgmimrowsemanticsmathinlineformulainlineformulamathdisplayinlinesemanticsmrowmimathvariantbolditalictmimimathvari
AT yasiryalhusayni enhancingheattransferinbloodhybridnanofluidflowwithinlineformulamathdisplayinlinesemanticsmrowmimathvariantbolditalicamimimathvariantbolditalicgmimrowsemanticsmathinlineformulainlineformulamathdisplayinlinesemanticsmrowmimathvariantbolditalictmimimathvari
AT babikirosmanelbashir enhancingheattransferinbloodhybridnanofluidflowwithinlineformulamathdisplayinlinesemanticsmrowmimathvariantbolditalicamimimathvariantbolditalicgmimrowsemanticsmathinlineformulainlineformulamathdisplayinlinesemanticsmrowmimathvariantbolditalictmimimathvari
AT anwarsaeed enhancingheattransferinbloodhybridnanofluidflowwithinlineformulamathdisplayinlinesemanticsmrowmimathvariantbolditalicamimimathvariantbolditalicgmimrowsemanticsmathinlineformulainlineformulamathdisplayinlinesemanticsmrowmimathvariantbolditalictmimimathvari
AT alisalehalshomrani enhancingheattransferinbloodhybridnanofluidflowwithinlineformulamathdisplayinlinesemanticsmrowmimathvariantbolditalicamimimathvariantbolditalicgmimrowsemanticsmathinlineformulainlineformulamathdisplayinlinesemanticsmrowmimathvariantbolditalictmimimathvari
AT farisalzahrani enhancingheattransferinbloodhybridnanofluidflowwithinlineformulamathdisplayinlinesemanticsmrowmimathvariantbolditalicamimimathvariantbolditalicgmimrowsemanticsmathinlineformulainlineformulamathdisplayinlinesemanticsmrowmimathvariantbolditalictmimimathvari