Reaction kinetics and properties of MDI base poly (urethane-isocyanurate) network polymers
Since the trimerization of isocyanate occurs easily and controllably to form a clear trifunctional isocyanate ring, this reaction is an ideal candidate for the synthesis of a clear poly(urethane-isocyanurate) network polymer. Poly(urethane-isocyanurate) network polymer (PUI) was prepared from diphen...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2021-01-01
|
Series: | Designed Monomers and Polymers |
Subjects: | |
Online Access: | http://dx.doi.org/10.1080/15685551.2021.1971858 |
Summary: | Since the trimerization of isocyanate occurs easily and controllably to form a clear trifunctional isocyanate ring, this reaction is an ideal candidate for the synthesis of a clear poly(urethane-isocyanurate) network polymer. Poly(urethane-isocyanurate) network polymer (PUI) was prepared from diphenylmethane diisocyanate (MDI) and propylene glycol (PPG) by cyclotrimerization of isocyanate group (NCO). It was proved that the expected product was successfully prepared by NCO determination, fourier transform infrared (FTIR) and gel permeation chromatography (GPC) characterization. The mechanical and thermal properties were characterized. Through the effects of catalyst dosage, polyurethane prepolymer molecular weight, reaction time, reaction temperature and MDI addition on the reaction process, it is determined that under certain other conditions, the step heating method is better for cyclotrimerization reaction. Generally, the better heating conditions are 60 °C/1 h + 80 °C/4 h + 100 °C/2 h + 120 °C/2 h + 140 °C/2 h + 160 °C/2 h. The results of thermogravimetric analysis (TGA) and mechanical properties showed that with the increase of cross-linking points in the polymer structure, the thermal stability, tensile strength, tensile modulus and hardness of PUI increased, while the elongation at break decreased significantly. The glass transition temperature (Tg) of PUI is around 45 °C, and it can be seen that the elastic modulus of the material can range from 58 to 1980 MPa. X-ray diffraction results show that the rubber phase represented by the flexible segment and the plastic phase represented by the rigid structure are amorphous. |
---|---|
ISSN: | 1385-772X 1568-5551 |