Robust Finite-Time <italic>H</italic>&#x221E; Control for the Uncertain Singular System

This paper addresses the robust finite-time <inline-formula> <tex-math notation="LaTeX">$H_\infty $ </tex-math></inline-formula> control problem for the uncertain singular system by using the stability theory of dynamical systems. Firstly, a lemma is provided to sho...

Full description

Bibliographic Details
Main Authors: Yang Ding, Hang Zhang, Tianbo Wang
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9567705/
_version_ 1818742315500437504
author Yang Ding
Hang Zhang
Tianbo Wang
author_facet Yang Ding
Hang Zhang
Tianbo Wang
author_sort Yang Ding
collection DOAJ
description This paper addresses the robust finite-time <inline-formula> <tex-math notation="LaTeX">$H_\infty $ </tex-math></inline-formula> control problem for the uncertain singular system by using the stability theory of dynamical systems. Firstly, a lemma is provided to show that the singular system is finite-time stability by using the state space decomposition approach. Similar with the proof method of this Lemma, the singular system is divided into a differential system and an algebra one. Then, some conditions are derived to ensure the singular system being finite-time <inline-formula> <tex-math notation="LaTeX">$H_\infty $ </tex-math></inline-formula> stability based on the obtained lemma, and the state feedback control law is designed. These conditions are provided in the form of the linear matrix inequalities and can be easily solved. Finally, a numerical example is given to illustrate the effectiveness of the obtained results.
first_indexed 2024-12-18T02:10:34Z
format Article
id doaj.art-8f0011c288f94759b165617cd60f4aeb
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-12-18T02:10:34Z
publishDate 2021-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-8f0011c288f94759b165617cd60f4aeb2022-12-21T21:24:29ZengIEEEIEEE Access2169-35362021-01-01913950813951510.1109/ACCESS.2021.31194089567705Robust Finite-Time <italic>H</italic>&#x221E; Control for the Uncertain Singular SystemYang Ding0https://orcid.org/0000-0002-1056-688XHang Zhang1https://orcid.org/0000-0001-8056-8138Tianbo Wang2https://orcid.org/0000-0003-0765-1693School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai, ChinaSchool of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai, ChinaSchool of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai, ChinaThis paper addresses the robust finite-time <inline-formula> <tex-math notation="LaTeX">$H_\infty $ </tex-math></inline-formula> control problem for the uncertain singular system by using the stability theory of dynamical systems. Firstly, a lemma is provided to show that the singular system is finite-time stability by using the state space decomposition approach. Similar with the proof method of this Lemma, the singular system is divided into a differential system and an algebra one. Then, some conditions are derived to ensure the singular system being finite-time <inline-formula> <tex-math notation="LaTeX">$H_\infty $ </tex-math></inline-formula> stability based on the obtained lemma, and the state feedback control law is designed. These conditions are provided in the form of the linear matrix inequalities and can be easily solved. Finally, a numerical example is given to illustrate the effectiveness of the obtained results.https://ieeexplore.ieee.org/document/9567705/Finite-time stability<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">H</italic>∞ controlsingular systemuncertainty
spellingShingle Yang Ding
Hang Zhang
Tianbo Wang
Robust Finite-Time <italic>H</italic>&#x221E; Control for the Uncertain Singular System
IEEE Access
Finite-time stability
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">H</italic>∞ control
singular system
uncertainty
title Robust Finite-Time <italic>H</italic>&#x221E; Control for the Uncertain Singular System
title_full Robust Finite-Time <italic>H</italic>&#x221E; Control for the Uncertain Singular System
title_fullStr Robust Finite-Time <italic>H</italic>&#x221E; Control for the Uncertain Singular System
title_full_unstemmed Robust Finite-Time <italic>H</italic>&#x221E; Control for the Uncertain Singular System
title_short Robust Finite-Time <italic>H</italic>&#x221E; Control for the Uncertain Singular System
title_sort robust finite time italic h italic x221e control for the uncertain singular system
topic Finite-time stability
<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">H</italic>∞ control
singular system
uncertainty
url https://ieeexplore.ieee.org/document/9567705/
work_keys_str_mv AT yangding robustfinitetimeitalichitalicx221econtrolfortheuncertainsingularsystem
AT hangzhang robustfinitetimeitalichitalicx221econtrolfortheuncertainsingularsystem
AT tianbowang robustfinitetimeitalichitalicx221econtrolfortheuncertainsingularsystem