Reliability and Clinical Utility of Machine Learning to Predict Stroke Prognosis: Comparison with Logistic Regression

Bibliographic Details
Main Authors: Su-Kyeong Jang, Jun Young Chang, Ji Sung Lee, Eun-Jae Lee, Yong-Hwan Kim, Jung Hoon Han, Dae-Il Chang, Han Jin Cho, Jae-Kwan Cha, Kyung Ho Yu, Jin-Man Jung, Seong Hwan Ahn, Dong-Eog Kim, Sung-Il Sohn, Ju Hun Lee, Kyung-Pil Park, Sun U. Kwon, Jong S. Kim, Dong-Wha Kang
Format: Article
Language:English
Published: Korean Stroke Society 2020-09-01
Series:Journal of Stroke
Online Access:http://www.j-stroke.org/upload/pdf/jos-2020-02537.pdf
_version_ 1818145618145574912
author Su-Kyeong Jang
Jun Young Chang
Ji Sung Lee
Eun-Jae Lee
Yong-Hwan Kim
Jung Hoon Han
Dae-Il Chang
Han Jin Cho
Jae-Kwan Cha
Kyung Ho Yu
Jin-Man Jung
Seong Hwan Ahn
Dong-Eog Kim
Sung-Il Sohn
Ju Hun Lee
Kyung-Pil Park
Sun U. Kwon
Jong S. Kim
Dong-Wha Kang
author_facet Su-Kyeong Jang
Jun Young Chang
Ji Sung Lee
Eun-Jae Lee
Yong-Hwan Kim
Jung Hoon Han
Dae-Il Chang
Han Jin Cho
Jae-Kwan Cha
Kyung Ho Yu
Jin-Man Jung
Seong Hwan Ahn
Dong-Eog Kim
Sung-Il Sohn
Ju Hun Lee
Kyung-Pil Park
Sun U. Kwon
Jong S. Kim
Dong-Wha Kang
author_sort Su-Kyeong Jang
collection DOAJ
first_indexed 2024-12-11T12:06:19Z
format Article
id doaj.art-8f00d34451be46e5af7cc512285023f0
institution Directory Open Access Journal
issn 2287-6391
2287-6405
language English
last_indexed 2024-12-11T12:06:19Z
publishDate 2020-09-01
publisher Korean Stroke Society
record_format Article
series Journal of Stroke
spelling doaj.art-8f00d34451be46e5af7cc512285023f02022-12-22T01:07:55ZengKorean Stroke SocietyJournal of Stroke2287-63912287-64052020-09-0122340340610.5853/jos.2020.02537344Reliability and Clinical Utility of Machine Learning to Predict Stroke Prognosis: Comparison with Logistic RegressionSu-Kyeong JangJun Young ChangJi Sung LeeEun-Jae LeeYong-Hwan KimJung Hoon HanDae-Il ChangHan Jin ChoJae-Kwan ChaKyung Ho YuJin-Man JungSeong Hwan AhnDong-Eog KimSung-Il SohnJu Hun LeeKyung-Pil ParkSun U. KwonJong S. KimDong-Wha Kanghttp://www.j-stroke.org/upload/pdf/jos-2020-02537.pdf
spellingShingle Su-Kyeong Jang
Jun Young Chang
Ji Sung Lee
Eun-Jae Lee
Yong-Hwan Kim
Jung Hoon Han
Dae-Il Chang
Han Jin Cho
Jae-Kwan Cha
Kyung Ho Yu
Jin-Man Jung
Seong Hwan Ahn
Dong-Eog Kim
Sung-Il Sohn
Ju Hun Lee
Kyung-Pil Park
Sun U. Kwon
Jong S. Kim
Dong-Wha Kang
Reliability and Clinical Utility of Machine Learning to Predict Stroke Prognosis: Comparison with Logistic Regression
Journal of Stroke
title Reliability and Clinical Utility of Machine Learning to Predict Stroke Prognosis: Comparison with Logistic Regression
title_full Reliability and Clinical Utility of Machine Learning to Predict Stroke Prognosis: Comparison with Logistic Regression
title_fullStr Reliability and Clinical Utility of Machine Learning to Predict Stroke Prognosis: Comparison with Logistic Regression
title_full_unstemmed Reliability and Clinical Utility of Machine Learning to Predict Stroke Prognosis: Comparison with Logistic Regression
title_short Reliability and Clinical Utility of Machine Learning to Predict Stroke Prognosis: Comparison with Logistic Regression
title_sort reliability and clinical utility of machine learning to predict stroke prognosis comparison with logistic regression
url http://www.j-stroke.org/upload/pdf/jos-2020-02537.pdf
work_keys_str_mv AT sukyeongjang reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT junyoungchang reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT jisunglee reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT eunjaelee reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT yonghwankim reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT junghoonhan reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT daeilchang reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT hanjincho reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT jaekwancha reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT kyunghoyu reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT jinmanjung reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT seonghwanahn reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT dongeogkim reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT sungilsohn reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT juhunlee reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT kyungpilpark reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT sunukwon reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT jongskim reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression
AT dongwhakang reliabilityandclinicalutilityofmachinelearningtopredictstrokeprognosiscomparisonwithlogisticregression