The influence of anhydrite III as cement replacement material in production of lightweight masonry blocks for unreinforced non-load bearing walls
Lightweight cellular hollow concrete (LCHC) block is a type of masonry unit that has excellent thermal and acoustic performance, fire resistance and high weathering resistance, and manufactured by precast technique. This work presents an experimental study, which investigates the effects of volumetr...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Yildiz Technical University
2022-12-01
|
Series: | Journal of Sustainable Construction Materials and Technologies |
Subjects: | |
Online Access: | https://dergipark.org.tr/tr/download/article-file/2728196 |
_version_ | 1797921106416369664 |
---|---|
author | Lütfullah Gündüz Şevket Onur Kalkan |
author_facet | Lütfullah Gündüz Şevket Onur Kalkan |
author_sort | Lütfullah Gündüz |
collection | DOAJ |
description | Lightweight cellular hollow concrete (LCHC) block is a type of masonry unit that has excellent thermal and acoustic performance, fire resistance and high weathering resistance, and manufactured by precast technique. This work presents an experimental study, which investigates the effects of volumetric partial replacement of Portland cement by calcium sulfate anhydrite on precast properties, especially hardening time of the products, thermal insulation properties and mechanical properties of the blocks. LCHC block is produced by the mixing of Portland cement (PC), anhydrite III (ANH), expanded perlite (EP), pumice (PU) and calcite (CA) for building applications. The physical and mechanical properties of LCHC blocks having various replacement levels of ANH are studied. Experimental studies were carried out on both 10x10x10 cm3 cube specimens and 19x19x39 cm3 block specimens. In this research work, LCHC blocks with 16 different mixture batches were cast into a mould with vibro-compacting, de-moulded immediately and transferred to a storage area for curing up to 28 days in normal air condition. The unit weights and compressive strengths of the cube specimens decreased as the ANH replacement level increased, depending on the decrease in the cement ratio. However, it was observed that the compressive strength of the block specimens increased up to the volumetric replacement level of 1.86 %. As expected, the thermal conductivity values of the specimens decreased with the decrease in unit weight. The most notable change on the specimens occurred in the hardening time. The hardening process of the specimens can be completed up to 90 times faster than the control mixture. In addition, within the scope of the study, three formulations are presented in which the compressive strength and the elastic modulus of the wall sections made with LCHC blocks can be calculated, and thermal conductivity value of masonry block unit can be calculated. |
first_indexed | 2024-04-10T14:11:07Z |
format | Article |
id | doaj.art-8f0a98a892bc4d9f9601bd6b4bb7b190 |
institution | Directory Open Access Journal |
issn | 2458-973X |
language | English |
last_indexed | 2024-04-10T14:11:07Z |
publishDate | 2022-12-01 |
publisher | Yildiz Technical University |
record_format | Article |
series | Journal of Sustainable Construction Materials and Technologies |
spelling | doaj.art-8f0a98a892bc4d9f9601bd6b4bb7b1902023-02-15T16:09:43ZengYildiz Technical UniversityJournal of Sustainable Construction Materials and Technologies2458-973X2022-12-017432233810.47481/jscmt.1193891252The influence of anhydrite III as cement replacement material in production of lightweight masonry blocks for unreinforced non-load bearing wallsLütfullah Gündüz0Şevket Onur Kalkan1İZMİR KATİP ÇELEBİ ÜNİVERSİTESİİZMİR KATİP ÇELEBİ ÜNİVERSİTESİLightweight cellular hollow concrete (LCHC) block is a type of masonry unit that has excellent thermal and acoustic performance, fire resistance and high weathering resistance, and manufactured by precast technique. This work presents an experimental study, which investigates the effects of volumetric partial replacement of Portland cement by calcium sulfate anhydrite on precast properties, especially hardening time of the products, thermal insulation properties and mechanical properties of the blocks. LCHC block is produced by the mixing of Portland cement (PC), anhydrite III (ANH), expanded perlite (EP), pumice (PU) and calcite (CA) for building applications. The physical and mechanical properties of LCHC blocks having various replacement levels of ANH are studied. Experimental studies were carried out on both 10x10x10 cm3 cube specimens and 19x19x39 cm3 block specimens. In this research work, LCHC blocks with 16 different mixture batches were cast into a mould with vibro-compacting, de-moulded immediately and transferred to a storage area for curing up to 28 days in normal air condition. The unit weights and compressive strengths of the cube specimens decreased as the ANH replacement level increased, depending on the decrease in the cement ratio. However, it was observed that the compressive strength of the block specimens increased up to the volumetric replacement level of 1.86 %. As expected, the thermal conductivity values of the specimens decreased with the decrease in unit weight. The most notable change on the specimens occurred in the hardening time. The hardening process of the specimens can be completed up to 90 times faster than the control mixture. In addition, within the scope of the study, three formulations are presented in which the compressive strength and the elastic modulus of the wall sections made with LCHC blocks can be calculated, and thermal conductivity value of masonry block unit can be calculated.https://dergipark.org.tr/tr/download/article-file/2728196lightweight concreteanhydrite iiicalcium sulfatecement replacementmasonry blockthermal conductivitycompressive strength of masonry |
spellingShingle | Lütfullah Gündüz Şevket Onur Kalkan The influence of anhydrite III as cement replacement material in production of lightweight masonry blocks for unreinforced non-load bearing walls Journal of Sustainable Construction Materials and Technologies lightweight concrete anhydrite iii calcium sulfate cement replacement masonry block thermal conductivity compressive strength of masonry |
title | The influence of anhydrite III as cement replacement material in production of lightweight masonry blocks for unreinforced non-load bearing walls |
title_full | The influence of anhydrite III as cement replacement material in production of lightweight masonry blocks for unreinforced non-load bearing walls |
title_fullStr | The influence of anhydrite III as cement replacement material in production of lightweight masonry blocks for unreinforced non-load bearing walls |
title_full_unstemmed | The influence of anhydrite III as cement replacement material in production of lightweight masonry blocks for unreinforced non-load bearing walls |
title_short | The influence of anhydrite III as cement replacement material in production of lightweight masonry blocks for unreinforced non-load bearing walls |
title_sort | influence of anhydrite iii as cement replacement material in production of lightweight masonry blocks for unreinforced non load bearing walls |
topic | lightweight concrete anhydrite iii calcium sulfate cement replacement masonry block thermal conductivity compressive strength of masonry |
url | https://dergipark.org.tr/tr/download/article-file/2728196 |
work_keys_str_mv | AT lutfullahgunduz theinfluenceofanhydriteiiiascementreplacementmaterialinproductionoflightweightmasonryblocksforunreinforcednonloadbearingwalls AT sevketonurkalkan theinfluenceofanhydriteiiiascementreplacementmaterialinproductionoflightweightmasonryblocksforunreinforcednonloadbearingwalls AT lutfullahgunduz influenceofanhydriteiiiascementreplacementmaterialinproductionoflightweightmasonryblocksforunreinforcednonloadbearingwalls AT sevketonurkalkan influenceofanhydriteiiiascementreplacementmaterialinproductionoflightweightmasonryblocksforunreinforcednonloadbearingwalls |