AN INTEGRATED APPROACH TO ACCURATE DEM GENERARTION USING AIRBOREN FULL WAVEFORM LIDAR DATA
In this study, full waveform LiDAR data were exploited to improve the generation of a large-scale digital elevation model (DEM). Building on the methods of progressive generation of triangulation irregular network (TIN) model reported in the literature, we proposed an integrated approach. In this me...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2012-09-01
|
Series: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
Online Access: | http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXVIII-5-W12/237/2011/isprsarchives-XXXVIII-5-W12-237-2011.pdf |
_version_ | 1818232024112037888 |
---|---|
author | B. Hu D. Gumerov J.-G. Wang |
author_facet | B. Hu D. Gumerov J.-G. Wang |
author_sort | B. Hu |
collection | DOAJ |
description | In this study, full waveform LiDAR data were exploited to improve the generation of a large-scale digital elevation model (DEM). Building on the methods of progressive generation of triangulation irregular network (TIN) model reported in the literature, we proposed an integrated approach. In this method, echo detection, terrain identification, and TIN generation were performed synergically and iteratively, instead of their separate determinations as in most DEM generation methods. This method started with a TIN model made up of terrain points detected using a morphological opening operation and a curve matching method. For any given TIN facet, the full waveforms of the return associated with the laser pulses interacting with this TIN facet were examined near the surface for any terrain echoes. The TIN was then updated using the newly detected terrain points. These processes were iterated until no new terrain points were identified. The developed method was tested on a data set collected by a Riegl LMS Q-560 scanner over a study area near Sault Ste. Marie, Ontario, Canada (46<sup>°</sup>33'56''N, 83<sup>°</sup>25'18''W). The results demonstrated that 30% more terrain points were identified under shrubs and trees using this integrated approach, compared with the commonly used Gaussian decomposition method. The DEMs generated by the developed method exhibited more details in the terrain for two test sites than those obtained by using the TerraScan software. |
first_indexed | 2024-12-12T10:59:42Z |
format | Article |
id | doaj.art-8f1ed7175a2e4a80b3c9b7280ff887d9 |
institution | Directory Open Access Journal |
issn | 1682-1750 2194-9034 |
language | English |
last_indexed | 2024-12-12T10:59:42Z |
publishDate | 2012-09-01 |
publisher | Copernicus Publications |
record_format | Article |
series | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
spelling | doaj.art-8f1ed7175a2e4a80b3c9b7280ff887d92022-12-22T00:26:35ZengCopernicus PublicationsThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences1682-17502194-90342012-09-01XXXVIII-5/W1223724110.5194/isprsarchives-XXXVIII-5-W12-237-2011AN INTEGRATED APPROACH TO ACCURATE DEM GENERARTION USING AIRBOREN FULL WAVEFORM LIDAR DATAB. Hu0D. Gumerov1J.-G. Wang2Dept. of Earth and Space Science and Engineering, York University, Toronto, ON, M3J1P3, CanadaDept. of Earth and Space Science and Engineering, York University, Toronto, ON, M3J1P3, CanadaDept. of Earth and Space Science and Engineering, York University, Toronto, ON, M3J1P3, CanadaIn this study, full waveform LiDAR data were exploited to improve the generation of a large-scale digital elevation model (DEM). Building on the methods of progressive generation of triangulation irregular network (TIN) model reported in the literature, we proposed an integrated approach. In this method, echo detection, terrain identification, and TIN generation were performed synergically and iteratively, instead of their separate determinations as in most DEM generation methods. This method started with a TIN model made up of terrain points detected using a morphological opening operation and a curve matching method. For any given TIN facet, the full waveforms of the return associated with the laser pulses interacting with this TIN facet were examined near the surface for any terrain echoes. The TIN was then updated using the newly detected terrain points. These processes were iterated until no new terrain points were identified. The developed method was tested on a data set collected by a Riegl LMS Q-560 scanner over a study area near Sault Ste. Marie, Ontario, Canada (46<sup>°</sup>33'56''N, 83<sup>°</sup>25'18''W). The results demonstrated that 30% more terrain points were identified under shrubs and trees using this integrated approach, compared with the commonly used Gaussian decomposition method. The DEMs generated by the developed method exhibited more details in the terrain for two test sites than those obtained by using the TerraScan software.http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXVIII-5-W12/237/2011/isprsarchives-XXXVIII-5-W12-237-2011.pdf |
spellingShingle | B. Hu D. Gumerov J.-G. Wang AN INTEGRATED APPROACH TO ACCURATE DEM GENERARTION USING AIRBOREN FULL WAVEFORM LIDAR DATA The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
title | AN INTEGRATED APPROACH TO ACCURATE DEM GENERARTION USING AIRBOREN FULL WAVEFORM LIDAR DATA |
title_full | AN INTEGRATED APPROACH TO ACCURATE DEM GENERARTION USING AIRBOREN FULL WAVEFORM LIDAR DATA |
title_fullStr | AN INTEGRATED APPROACH TO ACCURATE DEM GENERARTION USING AIRBOREN FULL WAVEFORM LIDAR DATA |
title_full_unstemmed | AN INTEGRATED APPROACH TO ACCURATE DEM GENERARTION USING AIRBOREN FULL WAVEFORM LIDAR DATA |
title_short | AN INTEGRATED APPROACH TO ACCURATE DEM GENERARTION USING AIRBOREN FULL WAVEFORM LIDAR DATA |
title_sort | integrated approach to accurate dem generartion using airboren full waveform lidar data |
url | http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXVIII-5-W12/237/2011/isprsarchives-XXXVIII-5-W12-237-2011.pdf |
work_keys_str_mv | AT bhu anintegratedapproachtoaccuratedemgenerartionusingairborenfullwaveformlidardata AT dgumerov anintegratedapproachtoaccuratedemgenerartionusingairborenfullwaveformlidardata AT jgwang anintegratedapproachtoaccuratedemgenerartionusingairborenfullwaveformlidardata AT bhu integratedapproachtoaccuratedemgenerartionusingairborenfullwaveformlidardata AT dgumerov integratedapproachtoaccuratedemgenerartionusingairborenfullwaveformlidardata AT jgwang integratedapproachtoaccuratedemgenerartionusingairborenfullwaveformlidardata |