Enhanced Production of Androst-1,4-Diene-3,17-Dione by Mycobacterium neoaurum JC-12 Using Three-Stage Fermentation Strategy.

To improve the androst-1,4-diene-3,17-dione (ADD) production from phytosterol by Mycobacterium neoaurum JC-12, fructose was firstly found favorable as the initial carbon source to increase the biomass and eliminate the lag phase of M. neoaurum JC-12 in the phytosterol transformation process. Based o...

Full description

Bibliographic Details
Main Authors: Minglong Shao, Xian Zhang, Zhiming Rao, Meijuan Xu, Taowei Yang, Hui Li, Zhenghong Xu
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2015-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4564235?pdf=render
Description
Summary:To improve the androst-1,4-diene-3,17-dione (ADD) production from phytosterol by Mycobacterium neoaurum JC-12, fructose was firstly found favorable as the initial carbon source to increase the biomass and eliminate the lag phase of M. neoaurum JC-12 in the phytosterol transformation process. Based on this phenomenon, two-stage fermentation by using fructose as the initial carbon source and feeding glucose to maintain strain metabolism was designed. By applying this strategy, the fermentation duration was decreased from 168 h to 120 h with the ADD productivity increased from 0.071 g/(L·h) to 0.108 g/(L·h). Further, three-stage fermentation by adding phytosterol to improve ADD production at the end of the two-stage fermentation was carried out and the final ADD production reached 18.6 g/L, which is the highest reported ADD production using phytosterol as substrate. Thus, this strategy provides a possible way in enhancing the ADD production in pharmaceutical industry.
ISSN:1932-6203