Gauge-invariant theories and higher-degree forms
Abstract A free differential algebra is generalization of a Lie algebra in which the mathematical structure is extended by including of new Maurer-Cartan equations for higher-degree differential forms. In this article, we propose a generalization of the Chern-Weil theorem for free differential algeb...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2021-10-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | https://doi.org/10.1007/JHEP10(2021)066 |
Summary: | Abstract A free differential algebra is generalization of a Lie algebra in which the mathematical structure is extended by including of new Maurer-Cartan equations for higher-degree differential forms. In this article, we propose a generalization of the Chern-Weil theorem for free differential algebras containing only one p-form extension. This is achieved through a generalization of the covariant derivative, leading to an extension of the standard formula for Chern-Simons and transgression forms. We also study the possible existence of anomalies originated on this kind of structure. Some properties and particular cases are analyzed. |
---|---|
ISSN: | 1029-8479 |