Ultralow Charge Voltage Triggering Exceptional Post‐Charging Antibacterial Capability of Co3O4/MnOOH Nanoneedles for Skin Infection Treatment

Abstract The post‐charging antibacterial therapy is highly promising for treatment of Gram‐negative bacterial wound infections. However, the therapeutic efficacy of the current electrode materials is yet unsatisfactory due to their low charge storage capacity and limited reactive oxygen species (ROS...

Full description

Bibliographic Details
Main Authors: Xianshuo Cao, Zongshao Li, Fan Yang, Jinhao Xie, Xin Shi, Peiyan Yuan, Xin Ding, Xihong Lu
Format: Article
Language:English
Published: Wiley 2023-04-01
Series:Advanced Science
Subjects:
Online Access:https://doi.org/10.1002/advs.202207594
Description
Summary:Abstract The post‐charging antibacterial therapy is highly promising for treatment of Gram‐negative bacterial wound infections. However, the therapeutic efficacy of the current electrode materials is yet unsatisfactory due to their low charge storage capacity and limited reactive oxygen species (ROS) yields. Herein, the design of MnOOH decorated Co3O4 nanoneedles (MCO) with exceptional post‐charging antibacterial effect against Gram‐negative bacteria at a low charge voltage and their implementation as a robust antibacterial electrode for skin wound treatment are reported. Taking advantaging of the increased active sites and enhanced OH− adsorption capability, the charge storage capacity and ROS production of the MCO electrode are remarkably boosted. As a result, the MCO electrode after charging at an ultralow voltage of 1.4 V gives a 5.49 log and 5.82 log bacterial reduction in Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) within an incubation time of only 5 min, respectively. More importantly, the antibacterial efficiency of the MCO electrode against multi‐drug resistant (MDR) bacteria including Klebsiella pneumoniae (K. pneumoniae) and Acinetobacter baumannii (A. baumannii) also reaches 99.999%. In addition, the MCO electrode exhibits excellent reusability, and the role of extracellular ROS in enhancing post‐charging antibacterial activity is also unraveled.
ISSN:2198-3844