Ion transport and limited currents in supporting electrolytes and ionic liquids
Abstract Supporting electrolytes contain inert dissolved salts to increase the conductivity, to change microenvironments near the electrodes and to assist in electrochemical reactions. This combined experimental and computational study examines the impact of supporting salts on the ion transport and...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2022-04-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-022-10183-2 |
_version_ | 1818274186650451968 |
---|---|
author | Maximilian Schalenbach Yasin Emre Durmus Hermann Tempel Hans Kungl Rüdiger-A. Eichel |
author_facet | Maximilian Schalenbach Yasin Emre Durmus Hermann Tempel Hans Kungl Rüdiger-A. Eichel |
author_sort | Maximilian Schalenbach |
collection | DOAJ |
description | Abstract Supporting electrolytes contain inert dissolved salts to increase the conductivity, to change microenvironments near the electrodes and to assist in electrochemical reactions. This combined experimental and computational study examines the impact of supporting salts on the ion transport and related limited currents in electrochemical cells. A physical model that describes the multi-ion transport in liquid electrolytes and the resulting concentration gradients is presented. This model and its parameterization are evaluated by the measured limited current of the copper deposition in a CuSO4 electrolyte under a gradually increasing amount of Na2SO4 that acts as a supporting salt. A computational sensibility analysis of the transport model reveals that the shared conductance between the ions lowers the limited currents with larger supporting salt concentrations. When the supporting salt supplies most of the conductance, the electric-field-driven transport of the electrochemically active ions becomes negligible so that the limited current drops to the diffusion-limited current that is described by Fick’s first law. The transition from diluted supporting electrolyte to the case of ionic liquids is elucidated with the transport model, highlighting the different physical transport mechanisms in a non-conducting (polar) and a conducting (ionic) solvent. |
first_indexed | 2024-12-12T22:09:51Z |
format | Article |
id | doaj.art-8f41ec379ebe4f5ab01774c924607031 |
institution | Directory Open Access Journal |
issn | 2045-2322 |
language | English |
last_indexed | 2024-12-12T22:09:51Z |
publishDate | 2022-04-01 |
publisher | Nature Portfolio |
record_format | Article |
series | Scientific Reports |
spelling | doaj.art-8f41ec379ebe4f5ab01774c9246070312022-12-22T00:10:17ZengNature PortfolioScientific Reports2045-23222022-04-0112111010.1038/s41598-022-10183-2Ion transport and limited currents in supporting electrolytes and ionic liquidsMaximilian Schalenbach0Yasin Emre Durmus1Hermann Tempel2Hans Kungl3Rüdiger-A. Eichel4Fundamental Electrochemistry (IEK‑9), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbHFundamental Electrochemistry (IEK‑9), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbHFundamental Electrochemistry (IEK‑9), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbHFundamental Electrochemistry (IEK‑9), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbHFundamental Electrochemistry (IEK‑9), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbHAbstract Supporting electrolytes contain inert dissolved salts to increase the conductivity, to change microenvironments near the electrodes and to assist in electrochemical reactions. This combined experimental and computational study examines the impact of supporting salts on the ion transport and related limited currents in electrochemical cells. A physical model that describes the multi-ion transport in liquid electrolytes and the resulting concentration gradients is presented. This model and its parameterization are evaluated by the measured limited current of the copper deposition in a CuSO4 electrolyte under a gradually increasing amount of Na2SO4 that acts as a supporting salt. A computational sensibility analysis of the transport model reveals that the shared conductance between the ions lowers the limited currents with larger supporting salt concentrations. When the supporting salt supplies most of the conductance, the electric-field-driven transport of the electrochemically active ions becomes negligible so that the limited current drops to the diffusion-limited current that is described by Fick’s first law. The transition from diluted supporting electrolyte to the case of ionic liquids is elucidated with the transport model, highlighting the different physical transport mechanisms in a non-conducting (polar) and a conducting (ionic) solvent.https://doi.org/10.1038/s41598-022-10183-2 |
spellingShingle | Maximilian Schalenbach Yasin Emre Durmus Hermann Tempel Hans Kungl Rüdiger-A. Eichel Ion transport and limited currents in supporting electrolytes and ionic liquids Scientific Reports |
title | Ion transport and limited currents in supporting electrolytes and ionic liquids |
title_full | Ion transport and limited currents in supporting electrolytes and ionic liquids |
title_fullStr | Ion transport and limited currents in supporting electrolytes and ionic liquids |
title_full_unstemmed | Ion transport and limited currents in supporting electrolytes and ionic liquids |
title_short | Ion transport and limited currents in supporting electrolytes and ionic liquids |
title_sort | ion transport and limited currents in supporting electrolytes and ionic liquids |
url | https://doi.org/10.1038/s41598-022-10183-2 |
work_keys_str_mv | AT maximilianschalenbach iontransportandlimitedcurrentsinsupportingelectrolytesandionicliquids AT yasinemredurmus iontransportandlimitedcurrentsinsupportingelectrolytesandionicliquids AT hermanntempel iontransportandlimitedcurrentsinsupportingelectrolytesandionicliquids AT hanskungl iontransportandlimitedcurrentsinsupportingelectrolytesandionicliquids AT rudigeraeichel iontransportandlimitedcurrentsinsupportingelectrolytesandionicliquids |