Hydrogen Evolution Reaction Property in Alkaline Solution of Molybdenum Disulfide Modified by Surface Anchor of Nickel–Phosphorus Coating

Molybdenum disulfide (MoS2) is unfavorable for practical application in the hydrogen evolution reaction (HER) process due to its inert basal surface, inferior conductivity, and limited amount of active edge sites. For the purpose of enhancing the HER performance of this catalyst, the HER activity of...

Full description

Bibliographic Details
Main Authors: Jun He, Laizhou Song, Jiayun Yan, Ning Kang, Yingli Zhang, Wei Wang
Format: Article
Language:English
Published: MDPI AG 2017-06-01
Series:Metals
Subjects:
Online Access:http://www.mdpi.com/2075-4701/7/6/211
Description
Summary:Molybdenum disulfide (MoS2) is unfavorable for practical application in the hydrogen evolution reaction (HER) process due to its inert basal surface, inferior conductivity, and limited amount of active edge sites. For the purpose of enhancing the HER performance of this catalyst, the HER activity of its basal surface should be increased. Herein, three types of nickel-phosphorus (Ni–P) coatings—namely, low phosphorus (LP), medium phosphorus (MP) and high phosphorus (HP) —were anchored onto the surfaces of MoS2 nanoparticles via an electroless plating process; thus, three Ni–P/MoS2 composites (Ni–LP/MoS2, Ni–MP/MoS2, and Ni–HP/MoS2) were fabricated. Crystal structures, morphologies, chemical components, and HER performances of each in an alkaline solution were characterized. Both Ni–LP/MoS2 and Ni–MP/MoS2 showed a crystal nature, while the amorphous feature for Ni–HP/MoS2 was validated. The three Ni–P/MoS2 composites exhibited a higher HER activity than the pure MoS2. The HER performance of the Ni–MP/MoS2 composite was more outstanding than those of other two composites, which could be attributed to the presence of metastable nickel phosphides, and the excellent conductivity of Ni–MP coating anchored on the basal surface of MoS2.
ISSN:2075-4701