On the Double Roman Domination in Generalized Petersen Graphs <i>P</i>(5<i>k</i>,<i>k</i>)

A double Roman dominating function on a graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo>&...

Full description

Bibliographic Details
Main Authors: Darja Rupnik Poklukar, Janez Žerovnik
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/1/119
Description
Summary:A double Roman dominating function on a graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>:</mo><mi>V</mi><mo>→</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>}</mo></mrow></semantics></math></inline-formula> satisfying the condition that every vertex <i>u</i> for which <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> is adjacent to at least one vertex assigned 3 or at least two vertices assigned 2, and every vertex <i>u</i> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> is adjacent to at least one vertex assigned 2 or 3. The weight of <i>f</i> equals <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>w</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>=</mo><msub><mo>∑</mo><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. The double Roman domination number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>d</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of a graph <i>G</i> equals the minimum weight of a double Roman dominating function of <i>G</i>. We obtain closed expressions for the double Roman domination number of generalized Petersen graphs <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>(</mo><mn>5</mn><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula>. It is proven that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>d</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>P</mi><mrow><mo>(</mo><mn>5</mn><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mn>8</mn><mi>k</mi></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>≡</mo><mn>2</mn><mo>,</mo><mn>3</mn><mspace width="0.277778em"></mspace><mo form="prefix">mod</mo><mspace width="0.277778em"></mspace><mn>5</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>8</mn><mi>k</mi><mo>≤</mo><msub><mi>γ</mi><mrow><mi>d</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>P</mi><mrow><mo>(</mo><mn>5</mn><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>≤</mo><mn>8</mn><mi>k</mi><mo>+</mo><mn>2</mn></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>≡</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>4</mn><mspace width="0.277778em"></mspace><mo form="prefix">mod</mo><mspace width="0.277778em"></mspace><mn>5</mn></mrow></semantics></math></inline-formula>. We also improve the upper bounds for generalized Petersen graphs <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>(</mo><mn>20</mn><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula>.
ISSN:2227-7390