On the Double Roman Domination in Generalized Petersen Graphs <i>P</i>(5<i>k</i>,<i>k</i>)

A double Roman dominating function on a graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo>&...

Full description

Bibliographic Details
Main Authors: Darja Rupnik Poklukar, Janez Žerovnik
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/1/119
_version_ 1797498334198366208
author Darja Rupnik Poklukar
Janez Žerovnik
author_facet Darja Rupnik Poklukar
Janez Žerovnik
author_sort Darja Rupnik Poklukar
collection DOAJ
description A double Roman dominating function on a graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>:</mo><mi>V</mi><mo>→</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>}</mo></mrow></semantics></math></inline-formula> satisfying the condition that every vertex <i>u</i> for which <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> is adjacent to at least one vertex assigned 3 or at least two vertices assigned 2, and every vertex <i>u</i> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> is adjacent to at least one vertex assigned 2 or 3. The weight of <i>f</i> equals <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>w</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>=</mo><msub><mo>∑</mo><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. The double Roman domination number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>d</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of a graph <i>G</i> equals the minimum weight of a double Roman dominating function of <i>G</i>. We obtain closed expressions for the double Roman domination number of generalized Petersen graphs <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>(</mo><mn>5</mn><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula>. It is proven that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>d</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>P</mi><mrow><mo>(</mo><mn>5</mn><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mn>8</mn><mi>k</mi></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>≡</mo><mn>2</mn><mo>,</mo><mn>3</mn><mspace width="0.277778em"></mspace><mo form="prefix">mod</mo><mspace width="0.277778em"></mspace><mn>5</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>8</mn><mi>k</mi><mo>≤</mo><msub><mi>γ</mi><mrow><mi>d</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>P</mi><mrow><mo>(</mo><mn>5</mn><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>≤</mo><mn>8</mn><mi>k</mi><mo>+</mo><mn>2</mn></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>≡</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>4</mn><mspace width="0.277778em"></mspace><mo form="prefix">mod</mo><mspace width="0.277778em"></mspace><mn>5</mn></mrow></semantics></math></inline-formula>. We also improve the upper bounds for generalized Petersen graphs <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>(</mo><mn>20</mn><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula>.
first_indexed 2024-03-10T03:32:00Z
format Article
id doaj.art-8f556904ef3a4e55a1f16cc7f9b1f223
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T03:32:00Z
publishDate 2022-01-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-8f556904ef3a4e55a1f16cc7f9b1f2232023-11-23T11:54:25ZengMDPI AGMathematics2227-73902022-01-0110111910.3390/math10010119On the Double Roman Domination in Generalized Petersen Graphs <i>P</i>(5<i>k</i>,<i>k</i>)Darja Rupnik Poklukar0Janez Žerovnik1Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, SloveniaFaculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, SloveniaA double Roman dominating function on a graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>:</mo><mi>V</mi><mo>→</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>}</mo></mrow></semantics></math></inline-formula> satisfying the condition that every vertex <i>u</i> for which <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> is adjacent to at least one vertex assigned 3 or at least two vertices assigned 2, and every vertex <i>u</i> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> is adjacent to at least one vertex assigned 2 or 3. The weight of <i>f</i> equals <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>w</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>=</mo><msub><mo>∑</mo><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. The double Roman domination number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>d</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of a graph <i>G</i> equals the minimum weight of a double Roman dominating function of <i>G</i>. We obtain closed expressions for the double Roman domination number of generalized Petersen graphs <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>(</mo><mn>5</mn><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula>. It is proven that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>d</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>P</mi><mrow><mo>(</mo><mn>5</mn><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mn>8</mn><mi>k</mi></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>≡</mo><mn>2</mn><mo>,</mo><mn>3</mn><mspace width="0.277778em"></mspace><mo form="prefix">mod</mo><mspace width="0.277778em"></mspace><mn>5</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>8</mn><mi>k</mi><mo>≤</mo><msub><mi>γ</mi><mrow><mi>d</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>P</mi><mrow><mo>(</mo><mn>5</mn><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>≤</mo><mn>8</mn><mi>k</mi><mo>+</mo><mn>2</mn></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>≡</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>4</mn><mspace width="0.277778em"></mspace><mo form="prefix">mod</mo><mspace width="0.277778em"></mspace><mn>5</mn></mrow></semantics></math></inline-formula>. We also improve the upper bounds for generalized Petersen graphs <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>(</mo><mn>20</mn><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/10/1/119double Roman dominationgeneralized Petersen graphdischarging methodgraph coverdouble Roman graph
spellingShingle Darja Rupnik Poklukar
Janez Žerovnik
On the Double Roman Domination in Generalized Petersen Graphs <i>P</i>(5<i>k</i>,<i>k</i>)
Mathematics
double Roman domination
generalized Petersen graph
discharging method
graph cover
double Roman graph
title On the Double Roman Domination in Generalized Petersen Graphs <i>P</i>(5<i>k</i>,<i>k</i>)
title_full On the Double Roman Domination in Generalized Petersen Graphs <i>P</i>(5<i>k</i>,<i>k</i>)
title_fullStr On the Double Roman Domination in Generalized Petersen Graphs <i>P</i>(5<i>k</i>,<i>k</i>)
title_full_unstemmed On the Double Roman Domination in Generalized Petersen Graphs <i>P</i>(5<i>k</i>,<i>k</i>)
title_short On the Double Roman Domination in Generalized Petersen Graphs <i>P</i>(5<i>k</i>,<i>k</i>)
title_sort on the double roman domination in generalized petersen graphs i p i 5 i k i i k i
topic double Roman domination
generalized Petersen graph
discharging method
graph cover
double Roman graph
url https://www.mdpi.com/2227-7390/10/1/119
work_keys_str_mv AT darjarupnikpoklukar onthedoubleromandominationingeneralizedpetersengraphsipi5ikiiki
AT janezzerovnik onthedoubleromandominationingeneralizedpetersengraphsipi5ikiiki