On the Double Roman Domination in Generalized Petersen Graphs <i>P</i>(5<i>k</i>,<i>k</i>)
A double Roman dominating function on a graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo>&...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-01-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/10/1/119 |
_version_ | 1797498334198366208 |
---|---|
author | Darja Rupnik Poklukar Janez Žerovnik |
author_facet | Darja Rupnik Poklukar Janez Žerovnik |
author_sort | Darja Rupnik Poklukar |
collection | DOAJ |
description | A double Roman dominating function on a graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>:</mo><mi>V</mi><mo>→</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>}</mo></mrow></semantics></math></inline-formula> satisfying the condition that every vertex <i>u</i> for which <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> is adjacent to at least one vertex assigned 3 or at least two vertices assigned 2, and every vertex <i>u</i> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> is adjacent to at least one vertex assigned 2 or 3. The weight of <i>f</i> equals <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>w</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>=</mo><msub><mo>∑</mo><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. The double Roman domination number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>d</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of a graph <i>G</i> equals the minimum weight of a double Roman dominating function of <i>G</i>. We obtain closed expressions for the double Roman domination number of generalized Petersen graphs <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>(</mo><mn>5</mn><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula>. It is proven that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>d</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>P</mi><mrow><mo>(</mo><mn>5</mn><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mn>8</mn><mi>k</mi></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>≡</mo><mn>2</mn><mo>,</mo><mn>3</mn><mspace width="0.277778em"></mspace><mo form="prefix">mod</mo><mspace width="0.277778em"></mspace><mn>5</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>8</mn><mi>k</mi><mo>≤</mo><msub><mi>γ</mi><mrow><mi>d</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>P</mi><mrow><mo>(</mo><mn>5</mn><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>≤</mo><mn>8</mn><mi>k</mi><mo>+</mo><mn>2</mn></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>≡</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>4</mn><mspace width="0.277778em"></mspace><mo form="prefix">mod</mo><mspace width="0.277778em"></mspace><mn>5</mn></mrow></semantics></math></inline-formula>. We also improve the upper bounds for generalized Petersen graphs <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>(</mo><mn>20</mn><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula>. |
first_indexed | 2024-03-10T03:32:00Z |
format | Article |
id | doaj.art-8f556904ef3a4e55a1f16cc7f9b1f223 |
institution | Directory Open Access Journal |
issn | 2227-7390 |
language | English |
last_indexed | 2024-03-10T03:32:00Z |
publishDate | 2022-01-01 |
publisher | MDPI AG |
record_format | Article |
series | Mathematics |
spelling | doaj.art-8f556904ef3a4e55a1f16cc7f9b1f2232023-11-23T11:54:25ZengMDPI AGMathematics2227-73902022-01-0110111910.3390/math10010119On the Double Roman Domination in Generalized Petersen Graphs <i>P</i>(5<i>k</i>,<i>k</i>)Darja Rupnik Poklukar0Janez Žerovnik1Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, SloveniaFaculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, SloveniaA double Roman dominating function on a graph <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>=</mo><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>:</mo><mi>V</mi><mo>→</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>}</mo></mrow></semantics></math></inline-formula> satisfying the condition that every vertex <i>u</i> for which <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> is adjacent to at least one vertex assigned 3 or at least two vertices assigned 2, and every vertex <i>u</i> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> is adjacent to at least one vertex assigned 2 or 3. The weight of <i>f</i> equals <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>w</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>=</mo><msub><mo>∑</mo><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. The double Roman domination number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>d</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of a graph <i>G</i> equals the minimum weight of a double Roman dominating function of <i>G</i>. We obtain closed expressions for the double Roman domination number of generalized Petersen graphs <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>(</mo><mn>5</mn><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula>. It is proven that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>γ</mi><mrow><mi>d</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>P</mi><mrow><mo>(</mo><mn>5</mn><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mn>8</mn><mi>k</mi></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>≡</mo><mn>2</mn><mo>,</mo><mn>3</mn><mspace width="0.277778em"></mspace><mo form="prefix">mod</mo><mspace width="0.277778em"></mspace><mn>5</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>8</mn><mi>k</mi><mo>≤</mo><msub><mi>γ</mi><mrow><mi>d</mi><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>P</mi><mrow><mo>(</mo><mn>5</mn><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>≤</mo><mn>8</mn><mi>k</mi><mo>+</mo><mn>2</mn></mrow></semantics></math></inline-formula> for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>≡</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>4</mn><mspace width="0.277778em"></mspace><mo form="prefix">mod</mo><mspace width="0.277778em"></mspace><mn>5</mn></mrow></semantics></math></inline-formula>. We also improve the upper bounds for generalized Petersen graphs <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>P</mi><mo>(</mo><mn>20</mn><mi>k</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/10/1/119double Roman dominationgeneralized Petersen graphdischarging methodgraph coverdouble Roman graph |
spellingShingle | Darja Rupnik Poklukar Janez Žerovnik On the Double Roman Domination in Generalized Petersen Graphs <i>P</i>(5<i>k</i>,<i>k</i>) Mathematics double Roman domination generalized Petersen graph discharging method graph cover double Roman graph |
title | On the Double Roman Domination in Generalized Petersen Graphs <i>P</i>(5<i>k</i>,<i>k</i>) |
title_full | On the Double Roman Domination in Generalized Petersen Graphs <i>P</i>(5<i>k</i>,<i>k</i>) |
title_fullStr | On the Double Roman Domination in Generalized Petersen Graphs <i>P</i>(5<i>k</i>,<i>k</i>) |
title_full_unstemmed | On the Double Roman Domination in Generalized Petersen Graphs <i>P</i>(5<i>k</i>,<i>k</i>) |
title_short | On the Double Roman Domination in Generalized Petersen Graphs <i>P</i>(5<i>k</i>,<i>k</i>) |
title_sort | on the double roman domination in generalized petersen graphs i p i 5 i k i i k i |
topic | double Roman domination generalized Petersen graph discharging method graph cover double Roman graph |
url | https://www.mdpi.com/2227-7390/10/1/119 |
work_keys_str_mv | AT darjarupnikpoklukar onthedoubleromandominationingeneralizedpetersengraphsipi5ikiiki AT janezzerovnik onthedoubleromandominationingeneralizedpetersengraphsipi5ikiiki |