Data on the transcriptional regulation of DNA damage induced apoptosis suppressor (DDIAS) by ERK5/MEF2B pathway in lung cancer cells

The data included in this article are associated with the article entitled “DNA-damage-induced apoptosis suppressor (DDIAS) is upregulated via ERK5/MEF2B signaling and promotes β-catenin-mediated invasion” (J.Y. Im, S.H. Yoon, B.K. Kim, H.S. Ban, K.J. Won, K.S. Chung, K.E. Jung, M. Won) [1]. Quantit...

Full description

Bibliographic Details
Main Authors: Joo-Young Im, Sung-Hoon Yoon, Bo-Kyung Kim, Hyun Seung Ban, Kyoung-Jae Won, Kyung-Sook Chung, Kyeong Eun Jung, Misun Won
Format: Article
Language:English
Published: Elsevier 2016-12-01
Series:Data in Brief
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352340916305674
Description
Summary:The data included in this article are associated with the article entitled “DNA-damage-induced apoptosis suppressor (DDIAS) is upregulated via ERK5/MEF2B signaling and promotes β-catenin-mediated invasion” (J.Y. Im, S.H. Yoon, B.K. Kim, H.S. Ban, K.J. Won, K.S. Chung, K.E. Jung, M. Won) [1]. Quantitative RT-PCR data revealed that genetic or pharmacological inhibition of extracellular signal-regulated kinase 5 (ERK5) suppresses DDIAS transcription in response to epidermal growth factor (EGF) in Hela cells. p300 did not interact with myocyte enhancer factor 2B (MEF2B), a downstream target of ERK5 and affect transcription of DDIAS. Moreover, DDIAS transcription is activated by ERK5/MEF2B signaling on EGF exposure in the non-small cell lung cancer cells (NSCLC) NCI-H1703 and NCI-H1299. DDIAS knockdown suppresses lung cancer cell invasion by decreasing β-catenin protein level on EGF exposure.
ISSN:2352-3409